Cargando…
Saliency-based 3D convolutional neural network for categorising common focal liver lesions on multisequence MRI
BACKGROUND: The imaging features of focal liver lesions (FLLs) are diverse and complex. Diagnosing FLLs with imaging alone remains challenging. We developed and validated an interpretable deep learning model for the classification of seven categories of FLLs on multisequence MRI and compared the dif...
Autores principales: | Wang, Shu-Hui, Han, Xin-Jun, Du, Jing, Wang, Zhen-Chang, Yuan, Chunwang, Chen, Yinan, Zhu, Yajing, Dou, Xin, Xu, Xiao-Wei, Xu, Hui, Yang, Zheng-Han |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613326/ https://www.ncbi.nlm.nih.gov/pubmed/34817732 http://dx.doi.org/10.1186/s13244-021-01117-z |
Ejemplares similares
-
Automated brain extraction of multisequence MRI using artificial neural networks
por: Isensee, Fabian, et al.
Publicado: (2019) -
Dual-Level Augmentation Radiomics Analysis for Multisequence MRI Meningioma Grading
por: Cai, Zongyou, et al.
Publicado: (2023) -
Clinical implementation of multisequence MRI‐based adaptive intracavitary brachytherapy for cervix cancer
por: Zoberi, Jacqueline E., et al.
Publicado: (2016) -
Therapeutic imaging window of cerebral infarction revealed by multisequence magnetic resonance imaging: An animal and clinical study☆
por: Lu, Hong, et al.
Publicado: (2012) -
Multisequence MRI-based radiomics nomogram for early prediction of osimertinib resistance in patients with non-small cell lung cancer brain metastases
por: Lv, Xinna, et al.
Publicado: (2023)