Cargando…
A reinforcement learning model to inform optimal decision paths for HIV elimination
The ‘Ending the HIV Epidemic (EHE)’ national plan aims to reduce annual HIV incidence in the United States from 38,000 in 2015 to 9,300 by 2025 and 3,300 by 2030. Diagnosis and treatment are two most effective interventions, and thus, identifying corresponding optimal combinations of testing and ret...
Autores principales: | Khatami, Seyedeh N., Gopalappa, Chaitra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613448/ https://www.ncbi.nlm.nih.gov/pubmed/34814269 http://dx.doi.org/10.3934/mbe.2021380 |
Ejemplares similares
-
Joint modeling HIV and HPV using a new hybrid agent-based network and compartmental simulation technique
por: Zhao, Xinmeng, et al.
Publicado: (2023) -
Evaluating the sensitivity of jurisdictional heterogeneity and jurisdictional mixing in national level HIV prevention analyses: context of the U.S. ending the HIV epidemic plan
por: Tatapudi, Hanisha, et al.
Publicado: (2022) -
Optimal Learning Paths in Information Networks
por: Rodi, G. C., et al.
Publicado: (2015) -
A new mixed agent-based network and compartmental simulation framework for joint modeling of related infectious diseases- application to sexually transmitted infections
por: Gopalappa, Chaitra, et al.
Publicado: (2022) -
Agent-based evolving network modeling: a new simulation method for modeling low prevalence infectious diseases
por: Eden, Matthew, et al.
Publicado: (2021)