Cargando…
FAIR data representation in times of eScience: a comparison of instance-based and class-based semantic representations of empirical data using phenotype descriptions as example
BACKGROUND: The size, velocity, and heterogeneity of Big Data outclasses conventional data management tools and requires data and metadata to be fully machine-actionable (i.e., eScience-compliant) and thus findable, accessible, interoperable, and reusable (FAIR). This can be achieved by using ontolo...
Autor principal: | Vogt, Lars |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613519/ https://www.ncbi.nlm.nih.gov/pubmed/34823588 http://dx.doi.org/10.1186/s13326-021-00254-0 |
Ejemplares similares
-
Data Provenance and Data Management in eScience
por: Liu, Qing, et al.
Publicado: (2013) -
An eScience-Bayes strategy for analyzing omics data
por: Eklund, Martin, et al.
Publicado: (2010) -
The Semantic Representation of Event Information Depends on the Cue Modality: An Instance of Meaning-Based Retrieval
por: Karlsson, Kristina, et al.
Publicado: (2013) -
Remote Instrumentation for eScience and Related Aspects
por: Davoli, Franco, et al.
Publicado: (2012) -
Semantic Annotation, Representation and Linking of Survey Data
por: Bensmann, Felix, et al.
Publicado: (2020)