Cargando…
Real‐time deep artifact suppression using recurrent U‐Nets for low‐latency cardiac MRI
PURPOSE: Real‐time low latency MRI is performed to guide various cardiac interventions. Real‐time acquisitions often require iterative image reconstruction strategies, which lead to long reconstruction times. In this study, we aim to reconstruct highly undersampled radial real‐time data with low lat...
Autores principales: | Jaubert, Olivier, Montalt‐Tordera, Javier, Knight, Dan, Coghlan, Gerry J., Arridge, Simon, Steeden, Jennifer A., Muthurangu, Vivek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613539/ https://www.ncbi.nlm.nih.gov/pubmed/34032308 http://dx.doi.org/10.1002/mrm.28834 |
Ejemplares similares
-
FReSCO: Flow Reconstruction and Segmentation for low‐latency Cardiac Output monitoring using deep artifact suppression and segmentation
por: Jaubert, Olivier, et al.
Publicado: (2022) -
Real‐time cardiovascular MR with spatio‐temporal artifact suppression using deep learning–proof of concept in congenital heart disease
por: Hauptmann, Andreas, et al.
Publicado: (2018) -
Reducing Contrast Agent Dose in Cardiovascular MR Angiography with Deep Learning
por: Montalt‐Tordera, Javier, et al.
Publicado: (2021) -
Left ventricular diastolic dysfunction in pulmonary hypertension predicts functional capacity and clinical worsening: a tissue phase mapping study
por: Knight, Daniel S., et al.
Publicado: (2015) -
Automatic segmentation of the great arteries for computational hemodynamic assessment
por: Montalt-Tordera, Javier, et al.
Publicado: (2022)