Cargando…
Wide-Field Mid-Infrared Hyperspectral Imaging by Snapshot Phase Contrast Measurement of Optothermal Excitation
[Image: see text] Vibrational microscopy methods based on Raman scattering or infrared absorption provide a label-free approach for chemical-contrast imaging, but employ point-by-point scanning and impose a compromise between the imaging speed and field-of-view (FOV). Optothermal microscopy has been...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613735/ https://www.ncbi.nlm.nih.gov/pubmed/34766751 http://dx.doi.org/10.1021/acs.analchem.1c02805 |
Sumario: | [Image: see text] Vibrational microscopy methods based on Raman scattering or infrared absorption provide a label-free approach for chemical-contrast imaging, but employ point-by-point scanning and impose a compromise between the imaging speed and field-of-view (FOV). Optothermal microscopy has been proposed as a promising imaging modality to avoid this compromise, although at restrictively small FOVs capable of imaging only few cells. Here, we present wide-field optothermal mid-infrared microscopy (WOMiM) for wide-field chemical-contrast imaging based on snapshot pump–probe detection of optothermal signal, using a custom-made condenser-free phase contrast microscopy to capture the phase change of samples after mid-infrared irradiation. We achieved chemical contrast for FOVs up to 180 μm in diameter, yielding 10-fold larger imaging areas than the state-of-the-art, at imaging speeds of 1 ms/frame. The maximum possible imaging speed of WOMiM was determined by the relaxation time of optothermal heat, measured to be 32.8 μs in water, corresponding to a frame rate of ∼30 kHz. This proof-of-concept demonstrates that vibrational imaging can be achieved at an unprecedented imaging speed and large FOV with the potential to significantly facilitate label-free imaging of cellular dynamics. |
---|