Cargando…
Molecular characterization of Escherichia coli isolated from milk samples with regard to virulence factors and antibiotic resistance
BACKGROUND AND AIM: Raw milk is considered an essential source of nutrition during all stages of human life because it offers a valuable supply of protein and minerals. Importantly, milk is considered a good media for the growth and contamination of many pathogenic bacteria, especially food-borne pa...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Veterinary World
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613785/ https://www.ncbi.nlm.nih.gov/pubmed/34840461 http://dx.doi.org/10.14202/vetworld.2021.2410-2418 |
_version_ | 1784603710777720832 |
---|---|
author | Younis, Waleed Hassan, Sabry Mohamed, Hams M.A. |
author_facet | Younis, Waleed Hassan, Sabry Mohamed, Hams M.A. |
author_sort | Younis, Waleed |
collection | PubMed |
description | BACKGROUND AND AIM: Raw milk is considered an essential source of nutrition during all stages of human life because it offers a valuable supply of protein and minerals. Importantly, milk is considered a good media for the growth and contamination of many pathogenic bacteria, especially food-borne pathogens such as Escherichia coli. Thus, the objective of this study was to characterize E. coli and detect its virulence factors and antibiotic resistance from raw milk samples. MATERIALS AND METHODS: Raw milk samples (n=100) were collected from different localities in Qena, Egypt, and investigated for the presence of E. coli using different biochemical tests, IMViC tests, serotyping to detect somatic antigen type, and molecularly by polymerase chain reaction (PCR) tests. The presence of different virulence and antimicrobial genes (hly, eae, stx1, stx2, blaTEM, tetA(A), and tetB genes) in E. coli isolates was evaluated using PCR. RESULTS: The results demonstrated that 10 out of 100 milk samples were contaminated with E. coli. Depending on serology, the isolates were classified as O114 (one isolate), O27 (two isolates), O111 (one isolate), O125 (two isolates), and untypeable (five isolates) E. coli. The sequencing of partially amplified 16S rRNA of the untypeable isolates resulted in one isolate, which was initially misidentified as untypeable E. coli but later proved as Enterobacter hormaechei. Moreover, antibacterial susceptibility analysis revealed that nearly all isolates were resistant to more than 3 families of antibiotics, particularly to b-lactams, clindamycin, and rifampin. PCR results demonstrated that all E. coli isolates showed an accurate amplicon for the blaTEM and tetA(A) genes, four isolates harbored eae gene, other four harbored tetB gene, and only one isolate exhibited a positive stx2 gene. CONCLUSION: Our study explored vital methods for identifying E. coli as a harmful pathogen of raw milk using 16S rRNA sequencing, phylogenetic analysis, and detection of virulence factors and antibiotic-resistant genes. |
format | Online Article Text |
id | pubmed-8613785 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Veterinary World |
record_format | MEDLINE/PubMed |
spelling | pubmed-86137852021-11-26 Molecular characterization of Escherichia coli isolated from milk samples with regard to virulence factors and antibiotic resistance Younis, Waleed Hassan, Sabry Mohamed, Hams M.A. Vet World Research Article BACKGROUND AND AIM: Raw milk is considered an essential source of nutrition during all stages of human life because it offers a valuable supply of protein and minerals. Importantly, milk is considered a good media for the growth and contamination of many pathogenic bacteria, especially food-borne pathogens such as Escherichia coli. Thus, the objective of this study was to characterize E. coli and detect its virulence factors and antibiotic resistance from raw milk samples. MATERIALS AND METHODS: Raw milk samples (n=100) were collected from different localities in Qena, Egypt, and investigated for the presence of E. coli using different biochemical tests, IMViC tests, serotyping to detect somatic antigen type, and molecularly by polymerase chain reaction (PCR) tests. The presence of different virulence and antimicrobial genes (hly, eae, stx1, stx2, blaTEM, tetA(A), and tetB genes) in E. coli isolates was evaluated using PCR. RESULTS: The results demonstrated that 10 out of 100 milk samples were contaminated with E. coli. Depending on serology, the isolates were classified as O114 (one isolate), O27 (two isolates), O111 (one isolate), O125 (two isolates), and untypeable (five isolates) E. coli. The sequencing of partially amplified 16S rRNA of the untypeable isolates resulted in one isolate, which was initially misidentified as untypeable E. coli but later proved as Enterobacter hormaechei. Moreover, antibacterial susceptibility analysis revealed that nearly all isolates were resistant to more than 3 families of antibiotics, particularly to b-lactams, clindamycin, and rifampin. PCR results demonstrated that all E. coli isolates showed an accurate amplicon for the blaTEM and tetA(A) genes, four isolates harbored eae gene, other four harbored tetB gene, and only one isolate exhibited a positive stx2 gene. CONCLUSION: Our study explored vital methods for identifying E. coli as a harmful pathogen of raw milk using 16S rRNA sequencing, phylogenetic analysis, and detection of virulence factors and antibiotic-resistant genes. Veterinary World 2021-09 2021-09-17 /pmc/articles/PMC8613785/ /pubmed/34840461 http://dx.doi.org/10.14202/vetworld.2021.2410-2418 Text en Copyright: © Younis, et al. https://creativecommons.org/licenses/by/4.0/Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Younis, Waleed Hassan, Sabry Mohamed, Hams M.A. Molecular characterization of Escherichia coli isolated from milk samples with regard to virulence factors and antibiotic resistance |
title | Molecular characterization of Escherichia coli isolated from milk samples with regard to virulence factors and antibiotic resistance |
title_full | Molecular characterization of Escherichia coli isolated from milk samples with regard to virulence factors and antibiotic resistance |
title_fullStr | Molecular characterization of Escherichia coli isolated from milk samples with regard to virulence factors and antibiotic resistance |
title_full_unstemmed | Molecular characterization of Escherichia coli isolated from milk samples with regard to virulence factors and antibiotic resistance |
title_short | Molecular characterization of Escherichia coli isolated from milk samples with regard to virulence factors and antibiotic resistance |
title_sort | molecular characterization of escherichia coli isolated from milk samples with regard to virulence factors and antibiotic resistance |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613785/ https://www.ncbi.nlm.nih.gov/pubmed/34840461 http://dx.doi.org/10.14202/vetworld.2021.2410-2418 |
work_keys_str_mv | AT youniswaleed molecularcharacterizationofescherichiacoliisolatedfrommilksampleswithregardtovirulencefactorsandantibioticresistance AT hassansabry molecularcharacterizationofescherichiacoliisolatedfrommilksampleswithregardtovirulencefactorsandantibioticresistance AT mohamedhamsma molecularcharacterizationofescherichiacoliisolatedfrommilksampleswithregardtovirulencefactorsandantibioticresistance |