Cargando…
The effect of noise on the predictive limit of QSAR models
A key challenge in the field of Quantitative Structure Activity Relationships (QSAR) is how to effectively treat experimental error in the training and evaluation of computational models. It is often assumed in the field of QSAR that models cannot produce predictions which are more accurate than the...
Autores principales: | Kolmar, Scott S., Grulke, Christopher M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613965/ https://www.ncbi.nlm.nih.gov/pubmed/34823605 http://dx.doi.org/10.1186/s13321-021-00571-7 |
Ejemplares similares
-
Open-source QSAR models for pKa prediction using multiple machine learning approaches
por: Mansouri, Kamel, et al.
Publicado: (2019) -
Exploring QSAR models for activity-cliff prediction
por: Dablander, Markus, et al.
Publicado: (2023) -
QSAR workbench: automating QSAR modeling to drive compound design
por: Cox, Richard, et al.
Publicado: (2013) -
Predictive QSAR Models for the Toxicity of Disinfection Byproducts
por: Qin, Litang, et al.
Publicado: (2017) -
On some aspects of validation of predictive QSAR models
por: Roy, K, et al.
Publicado: (2008)