Cargando…
Validation of a machine learning approach to estimate Clinical Disease Activity Index Scores for rheumatoid arthritis
OBJECTIVE: Disease activity measures, such as the Clinical Disease Activity Index (CDAI), are important tools for informing treatment decisions and monitoring patient outcomes in rheumatoid arthritis (RA). Yet, documentation of CDAI scores in electronic medical records and other real-world data sour...
Autores principales: | Spencer, Alison K., Bandaria, Jigar, Leavy, Michelle B., Gliklich, Benjamin, Su, Zhaohui, Curhan, Gary, Boussios, Costas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8614150/ https://www.ncbi.nlm.nih.gov/pubmed/34819386 http://dx.doi.org/10.1136/rmdopen-2021-001781 |
Ejemplares similares
-
Validation of a machine learning approach to estimate Systemic Lupus Erythematosus Disease Activity Index score categories and application in a real-world dataset
por: Alves, Pedro, et al.
Publicado: (2021) -
A Thermographic Disease Activity Index for remote assessment of rheumatoid arthritis
por: Morales-Ivorra, Isabel, et al.
Publicado: (2022) -
Brief Report: Estimating Disease Activity Using Multi‐Biomarker Disease Activity Scores in Rheumatoid Arthritis Patients Treated With Abatacept or Adalimumab
por: Fleischmann, Roy, et al.
Publicado: (2016) -
Finger Joint Cartilage Evaluated by Semiquantitative Ultrasound Score in Patients With Rheumatoid Arthritis
por: Ogura, Takehisa, et al.
Publicado: (2021) -
Use of multibiomarker disease activity scores in biosimilarity studies for the treatment of patients with rheumatoid arthritis
por: Kay, Jonathan, et al.
Publicado: (2022)