Cargando…
Staphylococcus-Induced Bacteriospermia In Vitro: Consequences on the Bovine Spermatozoa Quality, Extracellular Calcium and Magnesium Content
SIMPLE SUMMARY: Livestock semen is often contaminated by opportunistic bacterial pathogens originating from an intrinsic environment of the urogenital tract. Particularly, species classified in the Staphylococcus genus are predominantly represented in bovine ejaculates. Until recently, it was believ...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8614656/ https://www.ncbi.nlm.nih.gov/pubmed/34828039 http://dx.doi.org/10.3390/ani11113309 |
_version_ | 1784603913459073024 |
---|---|
author | Ďuračka, Michal Husarčíková, Kamila Jančov, Mikuláš Galovičová, Lucia Kačániová, Miroslava Lukáč, Norbert Tvrdá, Eva |
author_facet | Ďuračka, Michal Husarčíková, Kamila Jančov, Mikuláš Galovičová, Lucia Kačániová, Miroslava Lukáč, Norbert Tvrdá, Eva |
author_sort | Ďuračka, Michal |
collection | PubMed |
description | SIMPLE SUMMARY: Livestock semen is often contaminated by opportunistic bacterial pathogens originating from an intrinsic environment of the urogenital tract. Particularly, species classified in the Staphylococcus genus are predominantly represented in bovine ejaculates. Until recently, it was believed that these are a negligible part of the bovine ejaculate; however, recent studies revealed their potentially adverse effects on the sperm quality. Hereby, we simulated staphylococcal infection of bovine semen under laboratory conditions and analyzed its consequences on the sperm quality. ABSTRACT: Bacterial contamination of bovine ejaculates intended for artificial insemination may be reflected in a significant economic loss due to unsuccessful fertilization as well as health issues of the recipients. The Staphylococcus genus represents a large part of bacteriocenosis of bovine ejaculates. Therefore, this study aims to get a closer look on the effects of Staphylococcus-induced bacteriospermia under in vitro conditions on bovine sperm quality. Prior to inducing bacteriospermia, spermatozoa were separated from each ejaculate using Percoll(®) Plus gradient medium in order to limit the effects only to the selected bacterial species. Seven Staphylococcus species previously isolated from bovine semen were used for our experiments at a turbidity of 0.5 McFarland (equivalent to 1.5 × 10(8) colony-forming units per mL). The contaminated semen samples were incubated at 37 °C and at times of 0, 2, and 4 h, motility, mitochondrial membrane potential, reactive oxygen species (ROS) generation, sperm DNA fragmentation, and magnesium (Mg) and calcium (Ca) extracellular concentration were analyzed and compared with the control group (uncontaminated). The results showed no significant changes at the initial measurement. However, significant adverse effects were observed after 2 h and 4 h of incubation. Most notably, the presence of S. aureus, S. warneri, S. kloosii, and S. cohnii caused a significantly increased ROS production, leading to sperm DNA fragmentation, changes in the mitochondrial membrane potential, and a decreased sperm motility. Furthermore, the presence of Staphylococcus species led to lower extracellular concentrations of Mg and Ca. In conclusion, the overgrowth of Staphylococcus bacteria in bovine semen may contribute to oxidative stress resulting in sperm DNA fragmentation, altered mitochondrial membrane potential, and diminished sperm motility. |
format | Online Article Text |
id | pubmed-8614656 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86146562021-11-26 Staphylococcus-Induced Bacteriospermia In Vitro: Consequences on the Bovine Spermatozoa Quality, Extracellular Calcium and Magnesium Content Ďuračka, Michal Husarčíková, Kamila Jančov, Mikuláš Galovičová, Lucia Kačániová, Miroslava Lukáč, Norbert Tvrdá, Eva Animals (Basel) Article SIMPLE SUMMARY: Livestock semen is often contaminated by opportunistic bacterial pathogens originating from an intrinsic environment of the urogenital tract. Particularly, species classified in the Staphylococcus genus are predominantly represented in bovine ejaculates. Until recently, it was believed that these are a negligible part of the bovine ejaculate; however, recent studies revealed their potentially adverse effects on the sperm quality. Hereby, we simulated staphylococcal infection of bovine semen under laboratory conditions and analyzed its consequences on the sperm quality. ABSTRACT: Bacterial contamination of bovine ejaculates intended for artificial insemination may be reflected in a significant economic loss due to unsuccessful fertilization as well as health issues of the recipients. The Staphylococcus genus represents a large part of bacteriocenosis of bovine ejaculates. Therefore, this study aims to get a closer look on the effects of Staphylococcus-induced bacteriospermia under in vitro conditions on bovine sperm quality. Prior to inducing bacteriospermia, spermatozoa were separated from each ejaculate using Percoll(®) Plus gradient medium in order to limit the effects only to the selected bacterial species. Seven Staphylococcus species previously isolated from bovine semen were used for our experiments at a turbidity of 0.5 McFarland (equivalent to 1.5 × 10(8) colony-forming units per mL). The contaminated semen samples were incubated at 37 °C and at times of 0, 2, and 4 h, motility, mitochondrial membrane potential, reactive oxygen species (ROS) generation, sperm DNA fragmentation, and magnesium (Mg) and calcium (Ca) extracellular concentration were analyzed and compared with the control group (uncontaminated). The results showed no significant changes at the initial measurement. However, significant adverse effects were observed after 2 h and 4 h of incubation. Most notably, the presence of S. aureus, S. warneri, S. kloosii, and S. cohnii caused a significantly increased ROS production, leading to sperm DNA fragmentation, changes in the mitochondrial membrane potential, and a decreased sperm motility. Furthermore, the presence of Staphylococcus species led to lower extracellular concentrations of Mg and Ca. In conclusion, the overgrowth of Staphylococcus bacteria in bovine semen may contribute to oxidative stress resulting in sperm DNA fragmentation, altered mitochondrial membrane potential, and diminished sperm motility. MDPI 2021-11-19 /pmc/articles/PMC8614656/ /pubmed/34828039 http://dx.doi.org/10.3390/ani11113309 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ďuračka, Michal Husarčíková, Kamila Jančov, Mikuláš Galovičová, Lucia Kačániová, Miroslava Lukáč, Norbert Tvrdá, Eva Staphylococcus-Induced Bacteriospermia In Vitro: Consequences on the Bovine Spermatozoa Quality, Extracellular Calcium and Magnesium Content |
title | Staphylococcus-Induced Bacteriospermia In Vitro: Consequences on the Bovine Spermatozoa Quality, Extracellular Calcium and Magnesium Content |
title_full | Staphylococcus-Induced Bacteriospermia In Vitro: Consequences on the Bovine Spermatozoa Quality, Extracellular Calcium and Magnesium Content |
title_fullStr | Staphylococcus-Induced Bacteriospermia In Vitro: Consequences on the Bovine Spermatozoa Quality, Extracellular Calcium and Magnesium Content |
title_full_unstemmed | Staphylococcus-Induced Bacteriospermia In Vitro: Consequences on the Bovine Spermatozoa Quality, Extracellular Calcium and Magnesium Content |
title_short | Staphylococcus-Induced Bacteriospermia In Vitro: Consequences on the Bovine Spermatozoa Quality, Extracellular Calcium and Magnesium Content |
title_sort | staphylococcus-induced bacteriospermia in vitro: consequences on the bovine spermatozoa quality, extracellular calcium and magnesium content |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8614656/ https://www.ncbi.nlm.nih.gov/pubmed/34828039 http://dx.doi.org/10.3390/ani11113309 |
work_keys_str_mv | AT durackamichal staphylococcusinducedbacteriospermiainvitroconsequencesonthebovinespermatozoaqualityextracellularcalciumandmagnesiumcontent AT husarcikovakamila staphylococcusinducedbacteriospermiainvitroconsequencesonthebovinespermatozoaqualityextracellularcalciumandmagnesiumcontent AT jancovmikulas staphylococcusinducedbacteriospermiainvitroconsequencesonthebovinespermatozoaqualityextracellularcalciumandmagnesiumcontent AT galovicovalucia staphylococcusinducedbacteriospermiainvitroconsequencesonthebovinespermatozoaqualityextracellularcalciumandmagnesiumcontent AT kacaniovamiroslava staphylococcusinducedbacteriospermiainvitroconsequencesonthebovinespermatozoaqualityextracellularcalciumandmagnesiumcontent AT lukacnorbert staphylococcusinducedbacteriospermiainvitroconsequencesonthebovinespermatozoaqualityextracellularcalciumandmagnesiumcontent AT tvrdaeva staphylococcusinducedbacteriospermiainvitroconsequencesonthebovinespermatozoaqualityextracellularcalciumandmagnesiumcontent |