Cargando…
Effect of Customized Insoles on Gait in Post-Stroke Hemiparetic Individuals: A Randomized Controlled Trial
SIMPLE SUMMARY: Stroke patients commonly have different lower extremity biomechanical abnormalities that severely affect walking after damage to normal neural pathways, however, little attention has been paid to them, and current gait rehabilitation techniques have made limited efforts to provide pa...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8614694/ https://www.ncbi.nlm.nih.gov/pubmed/34827179 http://dx.doi.org/10.3390/biology10111187 |
Sumario: | SIMPLE SUMMARY: Stroke patients commonly have different lower extremity biomechanical abnormalities that severely affect walking after damage to normal neural pathways, however, little attention has been paid to them, and current gait rehabilitation techniques have made limited efforts to provide patients with consistent, stable, and effective correction when walking. In the present study, we investigated whether customized insoles could improve gait performance in hemiplegic stroke patients, and the results showed that customized insoles could be a valid intervention that targets residual hemiplegic gait after stroke, thereby enhancing walking function and improving the quality of life of the patients. ABSTRACT: Background: Insoles have been widely applied to many diseases, but stroke involves complex problems and there is a paucity of research on the application of insoles in stroke patients. Aim: To evaluate the effect of customized insoles on gait in patients with hemiplegia. Design: A randomized controlled trial. Setting: Rehabilitation department of a hospital. Population: A total of 50 stroke patients were randomized into an experimental group (n = 25) or a control group (n = 25). Methods: Both groups received conventional gait training, which was conducted five times a week, every 40 min for four weeks and patients in the experimental group were required to wear customized insoles for at least 1 h per day for four weeks. The primary outcome measure was the Tinetti Gait Scale (TGS) and the secondary outcome measures were the plantar pressure test, 6-min walking test (6MWT), lower extremity Fugl–Meyer assessment (FMA-LE), Berg Balance Scale (BBS), and the modified Barthel index (MBI). Results: Compared to the control group, there were significant increases in the experimental group after four weeks (p = 0.014) and at the four week follow-up (p = 0.001) in the change in TGS, weight-bearing on the involved side (p = 0.012) or forefoot (p = 0.028) when standing, weight-bearing on the involved side (p = 0.01 6) or forefoot (p = 0.043) when walking, early stance phase (p = 0.023) and mid stance phase (p = 0.013) on the involved side, FMA-LE (p = 0.029), BBS (p = 0.005), and MBI (p = 0.009), but there were no differences in the late stance phase (p = 0.472) on the involved side when walking or in the 6MWT (p = 0.069). Conclusions: Customized insoles had great efficacy in enhancing gait performance in stroke patients. |
---|