Cargando…

A Predictive Model for Severe COVID-19 in the Medicare Population: A Tool for Prioritizing Primary and Booster COVID-19 Vaccination

SIMPLE SUMMARY: Whether it is for COVID-19 primary vaccination or the administration of booster vaccines, prioritization criteria need to be established to optimize COVID-19 vaccination programs accounting for both clinical and social vulnerability risks for severe COVID-19 disease. We developed a d...

Descripción completa

Detalles Bibliográficos
Autores principales: Experton, Bettina, Tetteh, Hassan A., Lurie, Nicole, Walker, Peter, Elena, Adrien, Hein, Christopher S., Schwendiman, Blake, Vincent, Justin L., Burrow, Christopher R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8614832/
https://www.ncbi.nlm.nih.gov/pubmed/34827181
http://dx.doi.org/10.3390/biology10111185
Descripción
Sumario:SIMPLE SUMMARY: Whether it is for COVID-19 primary vaccination or the administration of booster vaccines, prioritization criteria need to be established to optimize COVID-19 vaccination programs accounting for both clinical and social vulnerability risks for severe COVID-19 disease. We developed a dual socio-clinical risk model for severe COVID-19 disease in the Medicare population, which is comprised mostly of individuals aged 65 and over. Our model generated risk levels correlated with regionalized COVID-19 case hospitalization rates and mapped them at the county and zip code levels. The model and map can be used by health jurisdictions to reach out to unvaccinated individuals. Our model approach can also be applied to identify Medicare beneficiaries who were in early vaccination groups to be vaccinated to identify those who might maximally benefit from an additional dose of COVID-19 vaccine if and when vaccine immunity wanes. ABSTRACT: Recommendations for prioritizing COVID-19 vaccination have focused on the elderly at higher risk for severe disease. Existing models for identifying higher-risk individuals lack the needed integration of socio-demographic and clinical risk factors. Using multivariate logistic regression and random forest modeling, we developed a predictive model of severe COVID-19 using clinical data from Medicare claims for 16 million Medicare beneficiaries and socio-economic data from the CDC Social Vulnerability Index. Predicted individual probabilities of COVID-19 hospitalization were then calculated for population risk stratification and vaccine prioritization and mapping. The leading COVID-19 hospitalization risk factors were non-white ethnicity, end-stage renal disease, advanced age, prior hospitalization, leukemia, morbid obesity, chronic kidney disease, lung cancer, chronic liver disease, pulmonary fibrosis or pulmonary hypertension, and chemotherapy. However, previously reported risk factors such as chronic obstructive pulmonary disease and diabetes conferred modest hospitalization risk. Among all social vulnerability factors, residence in a low-income zip code was the only risk factor independently predicting hospitalization. This multifactor risk model and its population risk dashboard can be used to optimize COVID-19 vaccine allocation in the higher-risk Medicare population.