Cargando…
Transcriptome Analysis Reveals Different Responsive Patterns to Nitrogen Deficiency in Two Wheat Near-Isogenic Lines Contrasting for Nitrogen Use Efficiency
SIMPLE SUMMARY: Nitrogen (N) limitation is the key factor for wheat production worldwide. Therefore, the development of genotypes with improved nitrogen use efficiency (NUE) is a prerequisite for sustainable and productive agriculture. Exploring the molecular mechanisms of low N stress tolerance is...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8614915/ https://www.ncbi.nlm.nih.gov/pubmed/34827119 http://dx.doi.org/10.3390/biology10111126 |
Sumario: | SIMPLE SUMMARY: Nitrogen (N) limitation is the key factor for wheat production worldwide. Therefore, the development of genotypes with improved nitrogen use efficiency (NUE) is a prerequisite for sustainable and productive agriculture. Exploring the molecular mechanisms of low N stress tolerance is significant for breeding wheat cultivars with high NUE. To clarify the underlying molecular mechanisms of enhanced resilience to low N in high-NUE wheat, we performed an RNA sequencing (RNA-seq) analysis. In the current research, two wheat near-isogenic lines (NILs) differing dramatically in NUE were used to measure gene expression differences under different N treatments. There was a dramatic difference between two wheat NILs in response to N deficiency at the transcriptional level, and the classification of identified candidate genes may provide new valuable insights into the resilience mechanism of wheat. ABSTRACT: The development of crop cultivars with high nitrogen use efficiency (NUE) under low-N fertilizer inputs is imperative for sustainable agriculture. However, there has been little research on the molecular mechanisms underlying enhanced resilience to low N in high-NUE plants. The comparison of the transcriptional responses of genotypes contrasting for NUE will facilitate an understanding of the key molecular mechanism of wheat resilience to low-N stress. In the current study, the RNA sequencing (RNA-seq) technique was employed to investigate the genotypic difference in response to N deficiency between two wheat NILs (1Y, high-NUE, and 1W, low-NUE). In our research, high- and low-NUE wheat NILs showed different patterns of gene expression under N-deficient conditions, and these N-responsive genes were classified into two major classes, including “frontloaded genes” and “relatively upregulated genes”. In total, 103 and 45 genes were identified as frontloaded genes in high-NUE and low-NUE wheat, respectively. In summary, our study might provide potential directions for further understanding the molecular mechanism of high-NUE genotypes adapting to low-N stress. |
---|