Cargando…
Aβ(1–40)-Induced Platelet Adhesion Is Ameliorated by Rosmarinic Acid through Inhibition of NADPH Oxidase/PKC-δ/Integrin α(IIb)β(3) Signaling
In platelets, oxidative stress reportedly increases platelet adhesion to vessels, thus promoting the vascular pathology of various neurodegenerative diseases, including Alzheimer’s disease (AD). Recently, it has been shown that β-amyloid (Aβ) can increase oxidative stress in platelets; however, the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615194/ https://www.ncbi.nlm.nih.gov/pubmed/34829541 http://dx.doi.org/10.3390/antiox10111671 |
_version_ | 1784604045904707584 |
---|---|
author | Lee, Bo Kyung Jee, Hye Jin Jung, Yi-Sook |
author_facet | Lee, Bo Kyung Jee, Hye Jin Jung, Yi-Sook |
author_sort | Lee, Bo Kyung |
collection | PubMed |
description | In platelets, oxidative stress reportedly increases platelet adhesion to vessels, thus promoting the vascular pathology of various neurodegenerative diseases, including Alzheimer’s disease (AD). Recently, it has been shown that β-amyloid (Aβ) can increase oxidative stress in platelets; however, the underlying mechanism remains elusive. In the present study, we aimed to elucidate the signaling pathway of platelet adhesion induced by Aβ(1–40), the major form of circulating Aβ, through Western blotting, immunofluorescence confocal microscopy, and fluorescence-activated cell sorting analysis. Additionally, we examined whether rosmarinic acid (RA), a natural polyphenol antioxidant, can modulate these processes. Our results show that Aβ(1–40)-induced platelet adhesion is mediated through NADPH oxidase/ROS/PKC-δ/integrin α(IIb)β(3) signaling, and these signaling pathways are significantly inhibited by RA. Collectively, these results suggest that RA may have beneficial effects on platelet-associated vascular pathology in AD. |
format | Online Article Text |
id | pubmed-8615194 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86151942021-11-26 Aβ(1–40)-Induced Platelet Adhesion Is Ameliorated by Rosmarinic Acid through Inhibition of NADPH Oxidase/PKC-δ/Integrin α(IIb)β(3) Signaling Lee, Bo Kyung Jee, Hye Jin Jung, Yi-Sook Antioxidants (Basel) Article In platelets, oxidative stress reportedly increases platelet adhesion to vessels, thus promoting the vascular pathology of various neurodegenerative diseases, including Alzheimer’s disease (AD). Recently, it has been shown that β-amyloid (Aβ) can increase oxidative stress in platelets; however, the underlying mechanism remains elusive. In the present study, we aimed to elucidate the signaling pathway of platelet adhesion induced by Aβ(1–40), the major form of circulating Aβ, through Western blotting, immunofluorescence confocal microscopy, and fluorescence-activated cell sorting analysis. Additionally, we examined whether rosmarinic acid (RA), a natural polyphenol antioxidant, can modulate these processes. Our results show that Aβ(1–40)-induced platelet adhesion is mediated through NADPH oxidase/ROS/PKC-δ/integrin α(IIb)β(3) signaling, and these signaling pathways are significantly inhibited by RA. Collectively, these results suggest that RA may have beneficial effects on platelet-associated vascular pathology in AD. MDPI 2021-10-23 /pmc/articles/PMC8615194/ /pubmed/34829541 http://dx.doi.org/10.3390/antiox10111671 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lee, Bo Kyung Jee, Hye Jin Jung, Yi-Sook Aβ(1–40)-Induced Platelet Adhesion Is Ameliorated by Rosmarinic Acid through Inhibition of NADPH Oxidase/PKC-δ/Integrin α(IIb)β(3) Signaling |
title | Aβ(1–40)-Induced Platelet Adhesion Is Ameliorated by Rosmarinic Acid through Inhibition of NADPH Oxidase/PKC-δ/Integrin α(IIb)β(3) Signaling |
title_full | Aβ(1–40)-Induced Platelet Adhesion Is Ameliorated by Rosmarinic Acid through Inhibition of NADPH Oxidase/PKC-δ/Integrin α(IIb)β(3) Signaling |
title_fullStr | Aβ(1–40)-Induced Platelet Adhesion Is Ameliorated by Rosmarinic Acid through Inhibition of NADPH Oxidase/PKC-δ/Integrin α(IIb)β(3) Signaling |
title_full_unstemmed | Aβ(1–40)-Induced Platelet Adhesion Is Ameliorated by Rosmarinic Acid through Inhibition of NADPH Oxidase/PKC-δ/Integrin α(IIb)β(3) Signaling |
title_short | Aβ(1–40)-Induced Platelet Adhesion Is Ameliorated by Rosmarinic Acid through Inhibition of NADPH Oxidase/PKC-δ/Integrin α(IIb)β(3) Signaling |
title_sort | aβ(1–40)-induced platelet adhesion is ameliorated by rosmarinic acid through inhibition of nadph oxidase/pkc-δ/integrin α(iib)β(3) signaling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615194/ https://www.ncbi.nlm.nih.gov/pubmed/34829541 http://dx.doi.org/10.3390/antiox10111671 |
work_keys_str_mv | AT leebokyung ab140inducedplateletadhesionisamelioratedbyrosmarinicacidthroughinhibitionofnadphoxidasepkcdintegrinaiibb3signaling AT jeehyejin ab140inducedplateletadhesionisamelioratedbyrosmarinicacidthroughinhibitionofnadphoxidasepkcdintegrinaiibb3signaling AT jungyisook ab140inducedplateletadhesionisamelioratedbyrosmarinicacidthroughinhibitionofnadphoxidasepkcdintegrinaiibb3signaling |