Cargando…
Bioinformatics study on different gene expression profiles of fibroblasts and vascular endothelial cells in keloids
Keloid is a benign fibroproliferative skin tumor. The respective functions of fibroblasts and vascular endothelial cells in keloid have not been fully studied. The purpose of this study is to identify the respective roles and key genes of fibroblasts and vascular endothelial cells in keloids, which...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615345/ https://www.ncbi.nlm.nih.gov/pubmed/34964740 http://dx.doi.org/10.1097/MD.0000000000027777 |
Sumario: | Keloid is a benign fibroproliferative skin tumor. The respective functions of fibroblasts and vascular endothelial cells in keloid have not been fully studied. The purpose of this study is to identify the respective roles and key genes of fibroblasts and vascular endothelial cells in keloids, which can be used as new targets for diagnosis or treatment. The microarray datasets of keloid fibroblasts and vascular endothelial cells were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened out. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for functional enrichment analysis. The search tool for retrieval of interacting genes and Cytoscape were used to construct protein-protein interaction (PPI) networks and analyze gene modules. The hub genes were screened out, and the relevant interaction networks and biological process analysis were carried out. In fibroblasts, the DEGs were significantly enriched in collagen fibril organization, extracellular matrix organization and ECM-receptor interaction. The PPI network was constructed, and the most significant module was selected, which is mainly enriched in ECM-receptor interaction. In vascular endothelial cells, the DEGs were significantly enriched in cytokine activity, growth factor activity and transforming growth factor-β (TGF-β) signaling pathway. Module analysis was mainly enriched in TGF-β signaling pathway. Hub genes were screened out separately. In summary, the DEGs and hub genes discovered in this study may help us understand the molecular mechanisms of keloid, and provide potential targets for diagnosis and treatment. |
---|