Cargando…
Assessing the Reliability of Quantitative Fatty Acid Signature Analysis and Compound-Specific Isotope Analysis-Based Mixing Models for Trophic Studies
The study of the trophic relationships of aquatic animals requires correct estimates of their diets. We compared the quantitative fatty acid signature analysis (QFASA) and the isotope-mixing model IsoError, based on the compound-specific isotope analysis of fatty acids (CSIA-FA), which are potential...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615491/ https://www.ncbi.nlm.nih.gov/pubmed/34827588 http://dx.doi.org/10.3390/biom11111590 |
_version_ | 1784604117494136832 |
---|---|
author | Prokopkin, Igor Makhutova, Olesia Kravchuk, Elena Sushchik, Nadezhda Anishchenko, Olesia Gladyshev, Michail |
author_facet | Prokopkin, Igor Makhutova, Olesia Kravchuk, Elena Sushchik, Nadezhda Anishchenko, Olesia Gladyshev, Michail |
author_sort | Prokopkin, Igor |
collection | PubMed |
description | The study of the trophic relationships of aquatic animals requires correct estimates of their diets. We compared the quantitative fatty acid signature analysis (QFASA) and the isotope-mixing model IsoError, based on the compound-specific isotope analysis of fatty acids (CSIA-FA), which are potentially effective models for quantitative diet estimations. In a 21-day experiment, Daphnia was fed a mixture of two food items, Chlorella and Cryptomonas, which were supplied in nearly equal proportions. The percentages and isotope values of the FAs of the algal species and Daphnia were measured. The IsoError based on CSIA-FA gave an estimation of algae consumption using only one FA, 18:3n-3. According to this model, the proportion of consumption of Chlorella decreased while the proportion of consumption of Cryptomonas increased during the experiment. The QFASA model was used for two FA subsets—the extended-dietary subset, which included sixteen FAs, and the dietary one, which included nine FAs. According to both subsets, the portion of consumed Chlorella decreased from Day 5 to 10 and then increased at Day 21. The comparison of the two model approaches showed that the QFASA model is a more reliable method to determine the contribution of different food sources to the diet of zooplankton than the CSIA-based mixing model. |
format | Online Article Text |
id | pubmed-8615491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86154912021-11-26 Assessing the Reliability of Quantitative Fatty Acid Signature Analysis and Compound-Specific Isotope Analysis-Based Mixing Models for Trophic Studies Prokopkin, Igor Makhutova, Olesia Kravchuk, Elena Sushchik, Nadezhda Anishchenko, Olesia Gladyshev, Michail Biomolecules Article The study of the trophic relationships of aquatic animals requires correct estimates of their diets. We compared the quantitative fatty acid signature analysis (QFASA) and the isotope-mixing model IsoError, based on the compound-specific isotope analysis of fatty acids (CSIA-FA), which are potentially effective models for quantitative diet estimations. In a 21-day experiment, Daphnia was fed a mixture of two food items, Chlorella and Cryptomonas, which were supplied in nearly equal proportions. The percentages and isotope values of the FAs of the algal species and Daphnia were measured. The IsoError based on CSIA-FA gave an estimation of algae consumption using only one FA, 18:3n-3. According to this model, the proportion of consumption of Chlorella decreased while the proportion of consumption of Cryptomonas increased during the experiment. The QFASA model was used for two FA subsets—the extended-dietary subset, which included sixteen FAs, and the dietary one, which included nine FAs. According to both subsets, the portion of consumed Chlorella decreased from Day 5 to 10 and then increased at Day 21. The comparison of the two model approaches showed that the QFASA model is a more reliable method to determine the contribution of different food sources to the diet of zooplankton than the CSIA-based mixing model. MDPI 2021-10-27 /pmc/articles/PMC8615491/ /pubmed/34827588 http://dx.doi.org/10.3390/biom11111590 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Prokopkin, Igor Makhutova, Olesia Kravchuk, Elena Sushchik, Nadezhda Anishchenko, Olesia Gladyshev, Michail Assessing the Reliability of Quantitative Fatty Acid Signature Analysis and Compound-Specific Isotope Analysis-Based Mixing Models for Trophic Studies |
title | Assessing the Reliability of Quantitative Fatty Acid Signature Analysis and Compound-Specific Isotope Analysis-Based Mixing Models for Trophic Studies |
title_full | Assessing the Reliability of Quantitative Fatty Acid Signature Analysis and Compound-Specific Isotope Analysis-Based Mixing Models for Trophic Studies |
title_fullStr | Assessing the Reliability of Quantitative Fatty Acid Signature Analysis and Compound-Specific Isotope Analysis-Based Mixing Models for Trophic Studies |
title_full_unstemmed | Assessing the Reliability of Quantitative Fatty Acid Signature Analysis and Compound-Specific Isotope Analysis-Based Mixing Models for Trophic Studies |
title_short | Assessing the Reliability of Quantitative Fatty Acid Signature Analysis and Compound-Specific Isotope Analysis-Based Mixing Models for Trophic Studies |
title_sort | assessing the reliability of quantitative fatty acid signature analysis and compound-specific isotope analysis-based mixing models for trophic studies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615491/ https://www.ncbi.nlm.nih.gov/pubmed/34827588 http://dx.doi.org/10.3390/biom11111590 |
work_keys_str_mv | AT prokopkinigor assessingthereliabilityofquantitativefattyacidsignatureanalysisandcompoundspecificisotopeanalysisbasedmixingmodelsfortrophicstudies AT makhutovaolesia assessingthereliabilityofquantitativefattyacidsignatureanalysisandcompoundspecificisotopeanalysisbasedmixingmodelsfortrophicstudies AT kravchukelena assessingthereliabilityofquantitativefattyacidsignatureanalysisandcompoundspecificisotopeanalysisbasedmixingmodelsfortrophicstudies AT sushchiknadezhda assessingthereliabilityofquantitativefattyacidsignatureanalysisandcompoundspecificisotopeanalysisbasedmixingmodelsfortrophicstudies AT anishchenkoolesia assessingthereliabilityofquantitativefattyacidsignatureanalysisandcompoundspecificisotopeanalysisbasedmixingmodelsfortrophicstudies AT gladyshevmichail assessingthereliabilityofquantitativefattyacidsignatureanalysisandcompoundspecificisotopeanalysisbasedmixingmodelsfortrophicstudies |