Cargando…
Neural Decoding of EEG Signals with Machine Learning: A Systematic Review
Electroencephalography (EEG) is a non-invasive technique used to record the brain’s evoked and induced electrical activity from the scalp. Artificial intelligence, particularly machine learning (ML) and deep learning (DL) algorithms, are increasingly being applied to EEG data for pattern analysis, g...
Autores principales: | Saeidi, Maham, Karwowski, Waldemar, Farahani, Farzad V., Fiok, Krzysztof, Taiar, Redha, Hancock, P. A., Al-Juaid, Awad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615531/ https://www.ncbi.nlm.nih.gov/pubmed/34827524 http://dx.doi.org/10.3390/brainsci11111525 |
Ejemplares similares
-
Decoding Task-Based fMRI Data with Graph Neural Networks, Considering Individual Differences
por: Saeidi, Maham, et al.
Publicado: (2022) -
The COVID-19 Infection Diffusion in the US and Japan: A Graph-Theoretical Approach
por: Davahli, Mohammad Reza, et al.
Publicado: (2022) -
Predicting the Dynamics of the COVID-19 Pandemic in the United States Using Graph Theory-Based Neural Networks
por: Davahli, Mohammad Reza, et al.
Publicado: (2021) -
A Study of the Effects of the COVID-19 Pandemic on the Experience of Back Pain Reported on Twitter(®) in the United States: A Natural Language Processing Approach
por: Fiok, Krzysztof, et al.
Publicado: (2021) -
Explainable AI: A review of applications to neuroimaging data
por: Farahani, Farzad V., et al.
Publicado: (2022)