Cargando…

Stable in Biocompatible Buffers Silver Nanoisland Films for SERS

We investigated the stability of silver nanoisland films, which were formed on glass surface by the method of out-diffusion, in biocompatible buffers and the applicability of the films in surface enhanced Raman scattering (SERS). We have shown that silver nanoisland films are stable in one of the mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Skvortsov, Alexey, Babich, Ekaterina, Redkov, Alexey, Lipovskii, Andrey, Zhurikhina, Valentina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615570/
https://www.ncbi.nlm.nih.gov/pubmed/34821664
http://dx.doi.org/10.3390/bios11110448
Descripción
Sumario:We investigated the stability of silver nanoisland films, which were formed on glass surface by the method of out-diffusion, in biocompatible buffers and the applicability of the films in surface enhanced Raman scattering (SERS). We have shown that silver nanoisland films are stable in one of the most widespread in biological studies buffer—phosphate buffer saline (PBS), and in 1:100 water-diluted PBS, in the PBS-based buffer, in which NaCl is replaced by the same amount of NaClO(4), and in acidic phosphate buffer. At the same time, the replacement of NaCl in PBS by N(CH(3))(4)Cl leads to the degradation of the nanoislands. It was shown that after exposure to PBS the nanoisland films provided a good SERS signal from a monolayer of 1,2-di(4-pyridyl)ethylene (BPE), which makes silver nanoisland films promising for biosensor applications. Additionally, in our experiments, we registered for the first time that silver nanoparticles formed in the bulk of the samples dissolved after exposing to PBS, while nanoislands on the glass surface stayed unchanged. We associate this phenomenon with the interaction of ions contained in PBS solution with silver, which results in the shift of corresponding chemical equilibrium.