Cargando…
Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes
Transition metals have been explored extensively for non-enzymatic electrochemical detection of glucose. However, to enable glucose oxidation, the majority of reports require highly alkaline electrolytes which can be damaging to the sensors and hazardous to handle. In this work, we developed a non-e...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615574/ https://www.ncbi.nlm.nih.gov/pubmed/34821625 http://dx.doi.org/10.3390/bios11110409 |
_version_ | 1784604137246162944 |
---|---|
author | Goodnight, Lindsey Butler, Derrick Xia, Tunan Ebrahimi, Aida |
author_facet | Goodnight, Lindsey Butler, Derrick Xia, Tunan Ebrahimi, Aida |
author_sort | Goodnight, Lindsey |
collection | PubMed |
description | Transition metals have been explored extensively for non-enzymatic electrochemical detection of glucose. However, to enable glucose oxidation, the majority of reports require highly alkaline electrolytes which can be damaging to the sensors and hazardous to handle. In this work, we developed a non-enzymatic sensor for detection of glucose in near-neutral solution based on copper-nickel electrodes which are electrochemically modified in phosphate-buffered saline (PBS). Nickel and copper were deposited using chronopotentiometry, followed by a two-step annealing process in air (Step 1: at room temperature and Step 2: at 150 °C) and electrochemical stabilization in PBS. Morphology and chemical composition of the electrodes were characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic voltammetry was used to measure oxidation reaction of glucose in sodium sulfate (100 mM, pH 6.4). The PBS-Cu-Ni working electrodes enabled detection of glucose with a limit of detection (LOD) of 4.2 nM, a dynamic response from 5 nM to 20 mM, and sensitivity of 5.47 [Formula: see text] 0.45 [Formula: see text] at an applied potential of 0.2 V. In addition to the ultralow LOD, the sensors are selective toward glucose in the presence of physiologically relevant concentrations of ascorbic acid and uric acid spiked in artificial saliva. The optimized PBS-Cu-Ni electrodes demonstrate better stability after seven days storage in ambient compared to the Cu-Ni electrodes without PBS treatment. |
format | Online Article Text |
id | pubmed-8615574 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86155742021-11-26 Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes Goodnight, Lindsey Butler, Derrick Xia, Tunan Ebrahimi, Aida Biosensors (Basel) Article Transition metals have been explored extensively for non-enzymatic electrochemical detection of glucose. However, to enable glucose oxidation, the majority of reports require highly alkaline electrolytes which can be damaging to the sensors and hazardous to handle. In this work, we developed a non-enzymatic sensor for detection of glucose in near-neutral solution based on copper-nickel electrodes which are electrochemically modified in phosphate-buffered saline (PBS). Nickel and copper were deposited using chronopotentiometry, followed by a two-step annealing process in air (Step 1: at room temperature and Step 2: at 150 °C) and electrochemical stabilization in PBS. Morphology and chemical composition of the electrodes were characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic voltammetry was used to measure oxidation reaction of glucose in sodium sulfate (100 mM, pH 6.4). The PBS-Cu-Ni working electrodes enabled detection of glucose with a limit of detection (LOD) of 4.2 nM, a dynamic response from 5 nM to 20 mM, and sensitivity of 5.47 [Formula: see text] 0.45 [Formula: see text] at an applied potential of 0.2 V. In addition to the ultralow LOD, the sensors are selective toward glucose in the presence of physiologically relevant concentrations of ascorbic acid and uric acid spiked in artificial saliva. The optimized PBS-Cu-Ni electrodes demonstrate better stability after seven days storage in ambient compared to the Cu-Ni electrodes without PBS treatment. MDPI 2021-10-21 /pmc/articles/PMC8615574/ /pubmed/34821625 http://dx.doi.org/10.3390/bios11110409 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Goodnight, Lindsey Butler, Derrick Xia, Tunan Ebrahimi, Aida Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes |
title | Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes |
title_full | Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes |
title_fullStr | Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes |
title_full_unstemmed | Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes |
title_short | Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes |
title_sort | non-enzymatic detection of glucose in neutral solution using pbs-treated electrodeposited copper-nickel electrodes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615574/ https://www.ncbi.nlm.nih.gov/pubmed/34821625 http://dx.doi.org/10.3390/bios11110409 |
work_keys_str_mv | AT goodnightlindsey nonenzymaticdetectionofglucoseinneutralsolutionusingpbstreatedelectrodepositedcoppernickelelectrodes AT butlerderrick nonenzymaticdetectionofglucoseinneutralsolutionusingpbstreatedelectrodepositedcoppernickelelectrodes AT xiatunan nonenzymaticdetectionofglucoseinneutralsolutionusingpbstreatedelectrodepositedcoppernickelelectrodes AT ebrahimiaida nonenzymaticdetectionofglucoseinneutralsolutionusingpbstreatedelectrodepositedcoppernickelelectrodes |