Cargando…
Self-Attention-Based Models for the Extraction of Molecular Interactions from Biological Texts
For any molecule, network, or process of interest, keeping up with new publications on these is becoming increasingly difficult. For many cellular processes, the amount molecules and their interactions that need to be considered can be very large. Automated mining of publications can support large-s...
Autores principales: | Srivastava, Prashant, Bej, Saptarshi, Yordanova, Kristina, Wolkenhauer, Olaf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615611/ https://www.ncbi.nlm.nih.gov/pubmed/34827589 http://dx.doi.org/10.3390/biom11111591 |
Ejemplares similares
-
Automated annotation of rare-cell types from single-cell RNA-sequencing data through synthetic oversampling
por: Bej, Saptarshi, et al.
Publicado: (2021) -
Identification and epidemiological characterization of Type-2 diabetes sub-population using an unsupervised machine learning approach
por: Bej, Saptarshi, et al.
Publicado: (2022) -
Contribution of Synthetic Data Generation towards an Improved Patient Stratification in Palliative Care
por: Hahn, Waldemar, et al.
Publicado: (2022) -
An algorithm to detect and communicate the differences in computational models describing biological systems
por: Scharm, Martin, et al.
Publicado: (2016) -
Stochastic Approaches for Systems Biology
por: Ullah, Mukhtar, et al.
Publicado: (2011)