Cargando…

Sex Differences in Dopamine Receptor Signaling in Fmr1 Knockout Mice: A Pilot Study

Fragile X syndrome (FXS) is an X-chromosome-linked dominant genetic disorder that causes a variable degree of cognitive dysfunction and developmental disability. Current treatment is symptomatic and no existing medications target the specific cause of FXS. As with other X-linked disorders, FXS manif...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Anlong, Wang, Le, Lu, Justin Y. D., Freeman, Amy, Campbell, Charlie, Su, Ping, Wong, Albert H. C., Liu, Fang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615700/
https://www.ncbi.nlm.nih.gov/pubmed/34827397
http://dx.doi.org/10.3390/brainsci11111398
Descripción
Sumario:Fragile X syndrome (FXS) is an X-chromosome-linked dominant genetic disorder that causes a variable degree of cognitive dysfunction and developmental disability. Current treatment is symptomatic and no existing medications target the specific cause of FXS. As with other X-linked disorders, FXS manifests differently in males and females, including abnormalities in the dopamine system that are also seen in Fmr1-knockout (KO) mice. We investigated sex differences in dopamine signaling in Fmr1-KO mice in response to L-stepholidine, a dopamine D1 receptor agonist and D2 receptor antagonist. We found significant sex differences in basal levels of phosphorylated protein kinase A (p-PKA) and glycogen synthase kinase (GSK)-3β in wild type mice that were absent in Fmr1-KO mice. In wild-type mice, L-stepholidine increased p-PKA in males but not female mice, decreased p-GSK-3 in female mice and increased p-GSK-3 in male mice. Conversely, in Fmr1-KO mice, L-stepholidine increased p-PKA and p-GSK-3β in females, and decreased p-PKA and p-GSK-3β in males.