Cargando…
Spontaneous and Perturbational Complexity in Cortical Cultures
Dissociated cortical neurons in vitro display spontaneously synchronized, low-frequency firing patterns, which can resemble the slow wave oscillations characterizing sleep in vivo. Experiments in humans, rodents, and cortical slices have shown that awakening or the administration of activating neuro...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615728/ https://www.ncbi.nlm.nih.gov/pubmed/34827452 http://dx.doi.org/10.3390/brainsci11111453 |
_version_ | 1784604174920450048 |
---|---|
author | Colombi, Ilaria Nieus, Thierry Massimini, Marcello Chiappalone, Michela |
author_facet | Colombi, Ilaria Nieus, Thierry Massimini, Marcello Chiappalone, Michela |
author_sort | Colombi, Ilaria |
collection | PubMed |
description | Dissociated cortical neurons in vitro display spontaneously synchronized, low-frequency firing patterns, which can resemble the slow wave oscillations characterizing sleep in vivo. Experiments in humans, rodents, and cortical slices have shown that awakening or the administration of activating neuromodulators decrease slow waves, while increasing the spatio-temporal complexity of responses to perturbations. In this study, we attempted to replicate those findings using in vitro cortical cultures coupled with micro-electrode arrays and chemically treated with carbachol (CCh), to modulate sleep-like activity and suppress slow oscillations. We adapted metrics such as neural complexity (NC) and the perturbational complexity index (PCI), typically employed in animal and human brain studies, to quantify complexity in simplified, unstructured networks, both during resting state and in response to electrical stimulation. After CCh administration, we found a decrease in the amplitude of the initial response and a marked enhancement of the complexity during spontaneous activity. Crucially, unlike in cortical slices and intact brains, PCI in cortical cultures displayed only a moderate increase. This dissociation suggests that PCI, a measure of the complexity of causal interactions, requires more than activating neuromodulation and that additional factors, such as an appropriate circuit architecture, may be necessary. Exploring more structured in vitro networks, characterized by the presence of strong lateral connections, recurrent excitation, and feedback loops, may thus help to identify the features that are more relevant to support causal complexity. |
format | Online Article Text |
id | pubmed-8615728 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86157282021-11-26 Spontaneous and Perturbational Complexity in Cortical Cultures Colombi, Ilaria Nieus, Thierry Massimini, Marcello Chiappalone, Michela Brain Sci Article Dissociated cortical neurons in vitro display spontaneously synchronized, low-frequency firing patterns, which can resemble the slow wave oscillations characterizing sleep in vivo. Experiments in humans, rodents, and cortical slices have shown that awakening or the administration of activating neuromodulators decrease slow waves, while increasing the spatio-temporal complexity of responses to perturbations. In this study, we attempted to replicate those findings using in vitro cortical cultures coupled with micro-electrode arrays and chemically treated with carbachol (CCh), to modulate sleep-like activity and suppress slow oscillations. We adapted metrics such as neural complexity (NC) and the perturbational complexity index (PCI), typically employed in animal and human brain studies, to quantify complexity in simplified, unstructured networks, both during resting state and in response to electrical stimulation. After CCh administration, we found a decrease in the amplitude of the initial response and a marked enhancement of the complexity during spontaneous activity. Crucially, unlike in cortical slices and intact brains, PCI in cortical cultures displayed only a moderate increase. This dissociation suggests that PCI, a measure of the complexity of causal interactions, requires more than activating neuromodulation and that additional factors, such as an appropriate circuit architecture, may be necessary. Exploring more structured in vitro networks, characterized by the presence of strong lateral connections, recurrent excitation, and feedback loops, may thus help to identify the features that are more relevant to support causal complexity. MDPI 2021-11-01 /pmc/articles/PMC8615728/ /pubmed/34827452 http://dx.doi.org/10.3390/brainsci11111453 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Colombi, Ilaria Nieus, Thierry Massimini, Marcello Chiappalone, Michela Spontaneous and Perturbational Complexity in Cortical Cultures |
title | Spontaneous and Perturbational Complexity in Cortical Cultures |
title_full | Spontaneous and Perturbational Complexity in Cortical Cultures |
title_fullStr | Spontaneous and Perturbational Complexity in Cortical Cultures |
title_full_unstemmed | Spontaneous and Perturbational Complexity in Cortical Cultures |
title_short | Spontaneous and Perturbational Complexity in Cortical Cultures |
title_sort | spontaneous and perturbational complexity in cortical cultures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615728/ https://www.ncbi.nlm.nih.gov/pubmed/34827452 http://dx.doi.org/10.3390/brainsci11111453 |
work_keys_str_mv | AT colombiilaria spontaneousandperturbationalcomplexityincorticalcultures AT nieusthierry spontaneousandperturbationalcomplexityincorticalcultures AT massiminimarcello spontaneousandperturbationalcomplexityincorticalcultures AT chiappalonemichela spontaneousandperturbationalcomplexityincorticalcultures |