Cargando…
Machine Learning-Based Identification of Potentially Novel Non-Alcoholic Fatty Liver Disease Biomarkers
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that presents a great challenge for treatment and prevention.. This study aims to implement a machine learning approach that employs such datasets to identify potential biomarker targets. We developed a pipeline to identify potenti...
Autores principales: | Shafiha, Roshan, Bahcivanci, Basak, Gkoutos, Georgios V., Acharjee, Animesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615894/ https://www.ncbi.nlm.nih.gov/pubmed/34829865 http://dx.doi.org/10.3390/biomedicines9111636 |
Ejemplares similares
-
Associating transcriptomics data with inflammatory markers to understand tumour microenvironment in hepatocellular carcinoma
por: Bahcivanci, Basak, et al.
Publicado: (2022) -
Role of microbiota and microbiota‐derived short‐chain fatty acids in PDAC
por: Temel, Hülya Yılmaz, et al.
Publicado: (2022) -
Machine Learning-Based Identification of Colon Cancer Candidate Diagnostics Genes
por: Koppad, Saraswati, et al.
Publicado: (2022) -
-Omics biomarker identification pipeline for translational medicine
por: Bravo-Merodio, Laura, et al.
Publicado: (2019) -
NFnetFu: A novel workflow for microbiome data fusion
por: Bisht, Vartika, et al.
Publicado: (2021)