Cargando…
Manifold Feature Fusion with Dynamical Feature Selection for Cross-Subject Emotion Recognition
Affective computing systems can decode cortical activities to facilitate emotional human–computer interaction. However, personalities exist in neurophysiological responses among different users of the brain–computer interface leads to a difficulty for designing a generic emotion recognizer that is a...
Autores principales: | Hua, Yue, Zhong, Xiaolong, Zhang, Bingxue, Yin, Zhong, Zhang, Jianhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615971/ https://www.ncbi.nlm.nih.gov/pubmed/34827391 http://dx.doi.org/10.3390/brainsci11111392 |
Ejemplares similares
-
Cross-Subject EEG Feature Selection for Emotion Recognition Using Transfer Recursive Feature Elimination
por: Yin, Zhong, et al.
Publicado: (2017) -
Exploring EEG Features in Cross-Subject Emotion Recognition
por: Li, Xiang, et al.
Publicado: (2018) -
Multi-method Fusion of Cross-Subject Emotion Recognition Based on High-Dimensional EEG Features
por: Yang, Fu, et al.
Publicado: (2019) -
Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
por: Zuo, Xin, et al.
Publicado: (2022) -
EEG Emotion Recognition by Fusion of Multi-Scale Features
por: Du, Xiuli, et al.
Publicado: (2023)