Cargando…
Single-Cell Proteomic Profiling Identifies Nanoparticle Enhanced Therapy for Triple Negative Breast Cancer Stem Cells
Breast cancer remains a major cause of cancer-related deaths in women worldwide. Chemotherapy-promoted stemness and enhanced stem cell plasticity in breast cancer is a cause for great concern. The discovery of drugs targeting BCSCs was suggested to be an important advancement in the establishment of...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616083/ https://www.ncbi.nlm.nih.gov/pubmed/34831064 http://dx.doi.org/10.3390/cells10112842 |
_version_ | 1784604262199721984 |
---|---|
author | Wang, Wenzheng Lei, Bo Li, Lin Liu, Jianyu Li, Zhihui Pang, Yuheng Liu, Tong Li, Zhigao |
author_facet | Wang, Wenzheng Lei, Bo Li, Lin Liu, Jianyu Li, Zhihui Pang, Yuheng Liu, Tong Li, Zhigao |
author_sort | Wang, Wenzheng |
collection | PubMed |
description | Breast cancer remains a major cause of cancer-related deaths in women worldwide. Chemotherapy-promoted stemness and enhanced stem cell plasticity in breast cancer is a cause for great concern. The discovery of drugs targeting BCSCs was suggested to be an important advancement in the establishment of therapy that improves the efficacy of chemotherapy. In this work, by using single-cell mass cytometry, we observed that stemness in spheroid-forming cells derived from MDA-MB-231 cells was significantly increased after doxorubicin administration and up-regulated integrin αvβ3 expression was also observed. An RGD-included nanoparticle (CS-V) was designed, and it was found that it could promote doxorubicin’s efficacy against MDA-MB-231 spheroid cells. The above observations suggested that the combination of RGD-included nanoparticles (CS-V) with the chemo-drug doxorubicin could be developed as a potential therapy for breast cancer. |
format | Online Article Text |
id | pubmed-8616083 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86160832021-11-26 Single-Cell Proteomic Profiling Identifies Nanoparticle Enhanced Therapy for Triple Negative Breast Cancer Stem Cells Wang, Wenzheng Lei, Bo Li, Lin Liu, Jianyu Li, Zhihui Pang, Yuheng Liu, Tong Li, Zhigao Cells Article Breast cancer remains a major cause of cancer-related deaths in women worldwide. Chemotherapy-promoted stemness and enhanced stem cell plasticity in breast cancer is a cause for great concern. The discovery of drugs targeting BCSCs was suggested to be an important advancement in the establishment of therapy that improves the efficacy of chemotherapy. In this work, by using single-cell mass cytometry, we observed that stemness in spheroid-forming cells derived from MDA-MB-231 cells was significantly increased after doxorubicin administration and up-regulated integrin αvβ3 expression was also observed. An RGD-included nanoparticle (CS-V) was designed, and it was found that it could promote doxorubicin’s efficacy against MDA-MB-231 spheroid cells. The above observations suggested that the combination of RGD-included nanoparticles (CS-V) with the chemo-drug doxorubicin could be developed as a potential therapy for breast cancer. MDPI 2021-10-22 /pmc/articles/PMC8616083/ /pubmed/34831064 http://dx.doi.org/10.3390/cells10112842 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Wenzheng Lei, Bo Li, Lin Liu, Jianyu Li, Zhihui Pang, Yuheng Liu, Tong Li, Zhigao Single-Cell Proteomic Profiling Identifies Nanoparticle Enhanced Therapy for Triple Negative Breast Cancer Stem Cells |
title | Single-Cell Proteomic Profiling Identifies Nanoparticle Enhanced Therapy for Triple Negative Breast Cancer Stem Cells |
title_full | Single-Cell Proteomic Profiling Identifies Nanoparticle Enhanced Therapy for Triple Negative Breast Cancer Stem Cells |
title_fullStr | Single-Cell Proteomic Profiling Identifies Nanoparticle Enhanced Therapy for Triple Negative Breast Cancer Stem Cells |
title_full_unstemmed | Single-Cell Proteomic Profiling Identifies Nanoparticle Enhanced Therapy for Triple Negative Breast Cancer Stem Cells |
title_short | Single-Cell Proteomic Profiling Identifies Nanoparticle Enhanced Therapy for Triple Negative Breast Cancer Stem Cells |
title_sort | single-cell proteomic profiling identifies nanoparticle enhanced therapy for triple negative breast cancer stem cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616083/ https://www.ncbi.nlm.nih.gov/pubmed/34831064 http://dx.doi.org/10.3390/cells10112842 |
work_keys_str_mv | AT wangwenzheng singlecellproteomicprofilingidentifiesnanoparticleenhancedtherapyfortriplenegativebreastcancerstemcells AT leibo singlecellproteomicprofilingidentifiesnanoparticleenhancedtherapyfortriplenegativebreastcancerstemcells AT lilin singlecellproteomicprofilingidentifiesnanoparticleenhancedtherapyfortriplenegativebreastcancerstemcells AT liujianyu singlecellproteomicprofilingidentifiesnanoparticleenhancedtherapyfortriplenegativebreastcancerstemcells AT lizhihui singlecellproteomicprofilingidentifiesnanoparticleenhancedtherapyfortriplenegativebreastcancerstemcells AT pangyuheng singlecellproteomicprofilingidentifiesnanoparticleenhancedtherapyfortriplenegativebreastcancerstemcells AT liutong singlecellproteomicprofilingidentifiesnanoparticleenhancedtherapyfortriplenegativebreastcancerstemcells AT lizhigao singlecellproteomicprofilingidentifiesnanoparticleenhancedtherapyfortriplenegativebreastcancerstemcells |