Cargando…

Key Regulators of Autophagosome Closure

Autophagy is an evolutionarily conserved pathway, in which cytoplasmic components are sequestered within double-membrane vesicles called autophagosomes and then transported into lysosomes or vacuoles for degradation. Over 40 conserved autophagy-related (ATG) genes define the core machinery for the f...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Wenyan, Chen, Xuechai, Ji, Cuicui, Zhang, Wenting, Song, Jianing, Li, Jie, Wang, Juan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616111/
https://www.ncbi.nlm.nih.gov/pubmed/34831036
http://dx.doi.org/10.3390/cells10112814
Descripción
Sumario:Autophagy is an evolutionarily conserved pathway, in which cytoplasmic components are sequestered within double-membrane vesicles called autophagosomes and then transported into lysosomes or vacuoles for degradation. Over 40 conserved autophagy-related (ATG) genes define the core machinery for the five processes of autophagy: initiation, nucleation, elongation, closure, and fusion. In this review, we focus on one of the least well-characterized events in autophagy, namely the closure of the isolation membrane/phagophore to form the sealed autophagosome. This process is tightly regulated by ESCRT machinery, ATG proteins, Rab GTPase and Rab-related proteins, SNAREs, sphingomyelin, and calcium. We summarize recent progress in the regulation of autophagosome closure and discuss the key questions remaining to be addressed.