Cargando…
The Potential of Induced Pluripotent Stem Cells to Advance the Treatment of Pancreatic Ductal Adenocarcinoma
SIMPLE SUMMARY: Despite improvements in the treatment of several cancer types, the extremely poor prognosis of pancreatic cancer patients has remained unchanged over the last decades. Therefore, new therapeutic regimens for pancreatic cancer are highly needed. In this review, we will discuss the pot...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616212/ https://www.ncbi.nlm.nih.gov/pubmed/34830945 http://dx.doi.org/10.3390/cancers13225789 |
Sumario: | SIMPLE SUMMARY: Despite improvements in the treatment of several cancer types, the extremely poor prognosis of pancreatic cancer patients has remained unchanged over the last decades. Therefore, new therapeutic regimens for pancreatic cancer are highly needed. In this review, we will discuss the potential of induced pluripotent stem cells (iPSCs) to generate representative pancreatic cancer models that can aid the development of novel diagnostics and therapeutic strategies. Furthermore, the potential of iPSCs as pancreatic cancer vaccines or as a basis for cellular therapies will be discussed. With promising preclinical results and ongoing clinical trials, the potential of iPSCs to further the treatment of pancreatic cancer is being explored and, in turn, will hopefully provide additional therapies to increase the poor survival rates of this patient population. ABSTRACT: Advances in the treatment of pancreatic ductal adenocarcinoma (PDAC) using neoadjuvant chemoradiotherapy, chemotherapy, and immunotherapy have had minimal impact on the overall survival of patients. A general lack of immunogenic features and a complex tumor microenvironment (TME) are likely culprits for therapy refractoriness in PDAC. Induced pluripotent stem cells (iPSCs) should be explored as a means to advance the treatment options for PDAC, by providing representative in vitro models of pancreatic cancer development. In addition, iPSCs could be used for tailor-made cellular immunotherapies or as a source of tumor-associated antigens in the context of vaccination. |
---|