Cargando…
Additive Manufacturing of Caffeic Acid-Inspired Mineral Trioxide Aggregate/Poly-ε-Caprolactone Scaffold for Regulating Vascular Induction and Osteogenic Regeneration of Dental Pulp Stem Cells
Mineral trioxide aggregate (MTA) is a common biomaterial used in endodontics regeneration due to its antibacterial properties, good biocompatibility and high bioactivity. Surface modification technology allows us to endow biomaterials with the necessary biological targets for activation of specific...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616324/ https://www.ncbi.nlm.nih.gov/pubmed/34831134 http://dx.doi.org/10.3390/cells10112911 |
_version_ | 1784604319899713536 |
---|---|
author | Tien, Ni Lee, Jian-Jr Lee, Alvin Kai-Xing Lin, Yen-Hong Chen, Jian-Xun Kuo, Ting-You Shie, Ming-You |
author_facet | Tien, Ni Lee, Jian-Jr Lee, Alvin Kai-Xing Lin, Yen-Hong Chen, Jian-Xun Kuo, Ting-You Shie, Ming-You |
author_sort | Tien, Ni |
collection | PubMed |
description | Mineral trioxide aggregate (MTA) is a common biomaterial used in endodontics regeneration due to its antibacterial properties, good biocompatibility and high bioactivity. Surface modification technology allows us to endow biomaterials with the necessary biological targets for activation of specific downstream functions such as promoting angiogenesis and osteogenesis. In this study, we used caffeic acid (CA)-coated MTA/polycaprolactone (PCL) composites and fabricated 3D scaffolds to evaluate the influence on the physicochemical and biological aspects of CA-coated MTA scaffolds. As seen from the results, modification of CA does not change the original structural characteristics of MTA, thus allowing us to retain the properties of MTA. CA-coated MTA scaffolds were shown to have 25% to 55% higher results than bare scaffold. In addition, CA-coated MTA scaffolds were able to significantly adsorb more vascular endothelial growth factors (p < 0.05) secreted from human dental pulp stem cells (hDPSCs). More importantly, CA-coated MTA scaffolds not only promoted the adhesion and proliferation behaviors of hDPSCs, but also enhanced angiogenesis and osteogenesis. Finally, CA-coated MTA scaffolds led to enhanced subsequent in vivo bone regeneration of the femur of rabbits, which was confirmed using micro-computed tomography and histological staining. Taken together, CA can be used as a potently functional bioactive coating for various scaffolds in bone tissue engineering and other biomedical applications in the future. |
format | Online Article Text |
id | pubmed-8616324 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86163242021-11-26 Additive Manufacturing of Caffeic Acid-Inspired Mineral Trioxide Aggregate/Poly-ε-Caprolactone Scaffold for Regulating Vascular Induction and Osteogenic Regeneration of Dental Pulp Stem Cells Tien, Ni Lee, Jian-Jr Lee, Alvin Kai-Xing Lin, Yen-Hong Chen, Jian-Xun Kuo, Ting-You Shie, Ming-You Cells Article Mineral trioxide aggregate (MTA) is a common biomaterial used in endodontics regeneration due to its antibacterial properties, good biocompatibility and high bioactivity. Surface modification technology allows us to endow biomaterials with the necessary biological targets for activation of specific downstream functions such as promoting angiogenesis and osteogenesis. In this study, we used caffeic acid (CA)-coated MTA/polycaprolactone (PCL) composites and fabricated 3D scaffolds to evaluate the influence on the physicochemical and biological aspects of CA-coated MTA scaffolds. As seen from the results, modification of CA does not change the original structural characteristics of MTA, thus allowing us to retain the properties of MTA. CA-coated MTA scaffolds were shown to have 25% to 55% higher results than bare scaffold. In addition, CA-coated MTA scaffolds were able to significantly adsorb more vascular endothelial growth factors (p < 0.05) secreted from human dental pulp stem cells (hDPSCs). More importantly, CA-coated MTA scaffolds not only promoted the adhesion and proliferation behaviors of hDPSCs, but also enhanced angiogenesis and osteogenesis. Finally, CA-coated MTA scaffolds led to enhanced subsequent in vivo bone regeneration of the femur of rabbits, which was confirmed using micro-computed tomography and histological staining. Taken together, CA can be used as a potently functional bioactive coating for various scaffolds in bone tissue engineering and other biomedical applications in the future. MDPI 2021-10-27 /pmc/articles/PMC8616324/ /pubmed/34831134 http://dx.doi.org/10.3390/cells10112911 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tien, Ni Lee, Jian-Jr Lee, Alvin Kai-Xing Lin, Yen-Hong Chen, Jian-Xun Kuo, Ting-You Shie, Ming-You Additive Manufacturing of Caffeic Acid-Inspired Mineral Trioxide Aggregate/Poly-ε-Caprolactone Scaffold for Regulating Vascular Induction and Osteogenic Regeneration of Dental Pulp Stem Cells |
title | Additive Manufacturing of Caffeic Acid-Inspired Mineral Trioxide Aggregate/Poly-ε-Caprolactone Scaffold for Regulating Vascular Induction and Osteogenic Regeneration of Dental Pulp Stem Cells |
title_full | Additive Manufacturing of Caffeic Acid-Inspired Mineral Trioxide Aggregate/Poly-ε-Caprolactone Scaffold for Regulating Vascular Induction and Osteogenic Regeneration of Dental Pulp Stem Cells |
title_fullStr | Additive Manufacturing of Caffeic Acid-Inspired Mineral Trioxide Aggregate/Poly-ε-Caprolactone Scaffold for Regulating Vascular Induction and Osteogenic Regeneration of Dental Pulp Stem Cells |
title_full_unstemmed | Additive Manufacturing of Caffeic Acid-Inspired Mineral Trioxide Aggregate/Poly-ε-Caprolactone Scaffold for Regulating Vascular Induction and Osteogenic Regeneration of Dental Pulp Stem Cells |
title_short | Additive Manufacturing of Caffeic Acid-Inspired Mineral Trioxide Aggregate/Poly-ε-Caprolactone Scaffold for Regulating Vascular Induction and Osteogenic Regeneration of Dental Pulp Stem Cells |
title_sort | additive manufacturing of caffeic acid-inspired mineral trioxide aggregate/poly-ε-caprolactone scaffold for regulating vascular induction and osteogenic regeneration of dental pulp stem cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616324/ https://www.ncbi.nlm.nih.gov/pubmed/34831134 http://dx.doi.org/10.3390/cells10112911 |
work_keys_str_mv | AT tienni additivemanufacturingofcaffeicacidinspiredmineraltrioxideaggregatepolyecaprolactonescaffoldforregulatingvascularinductionandosteogenicregenerationofdentalpulpstemcells AT leejianjr additivemanufacturingofcaffeicacidinspiredmineraltrioxideaggregatepolyecaprolactonescaffoldforregulatingvascularinductionandosteogenicregenerationofdentalpulpstemcells AT leealvinkaixing additivemanufacturingofcaffeicacidinspiredmineraltrioxideaggregatepolyecaprolactonescaffoldforregulatingvascularinductionandosteogenicregenerationofdentalpulpstemcells AT linyenhong additivemanufacturingofcaffeicacidinspiredmineraltrioxideaggregatepolyecaprolactonescaffoldforregulatingvascularinductionandosteogenicregenerationofdentalpulpstemcells AT chenjianxun additivemanufacturingofcaffeicacidinspiredmineraltrioxideaggregatepolyecaprolactonescaffoldforregulatingvascularinductionandosteogenicregenerationofdentalpulpstemcells AT kuotingyou additivemanufacturingofcaffeicacidinspiredmineraltrioxideaggregatepolyecaprolactonescaffoldforregulatingvascularinductionandosteogenicregenerationofdentalpulpstemcells AT shiemingyou additivemanufacturingofcaffeicacidinspiredmineraltrioxideaggregatepolyecaprolactonescaffoldforregulatingvascularinductionandosteogenicregenerationofdentalpulpstemcells |