Cargando…
Machine Learning for Recurrence Prediction of Gynecologic Cancers Using Lynch Syndrome-Related Screening Markers
SIMPLE SUMMARY: Recurrent patients with gynecologic cancer experience a difficult situation when using immune checkpoint inhibitors based on mismatch repair gene immunohistochemistry and microsatellite instability. Six machine learning algorithms were used to create predictive models with seven pros...
Autores principales: | Kim, Byung Wook, Choi, Min Chul, Kim, Min Kyu, Lee, Jeong-Won, Kim, Min Tae, Noh, Joseph J., Park, Hyun, Jung, Sang Geun, Joo, Won Duk, Song, Seung Hun, Lee, Chan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616351/ https://www.ncbi.nlm.nih.gov/pubmed/34830824 http://dx.doi.org/10.3390/cancers13225670 |
Ejemplares similares
-
Synchronous gynecologic malignancy and preliminary results of Lynch syndrome
por: Kim, Min Kyu, et al.
Publicado: (2011) -
Frequency of Mismatch Repair Deficiency/High Microsatellite Instability and Its Role as a Predictive Biomarker of Response to Immune Checkpoint Inhibitors in Gynecologic Cancers
por: Noh, Joseph J., et al.
Publicado: (2022) -
Real-World Experience with Pembrolizumab Treatment in Patients with Heavily Treated Recurrent Gynecologic Malignancies
por: Choi, Min Chul, et al.
Publicado: (2020) -
Rechallenge with Anti-PD-1 Inhibitors in Patients with Recurrent Gynecologic Malignancies
por: Kim, Migang, et al.
Publicado: (2023) -
Identification of Lynch Syndrome in Patients with Endometrial Cancer Based on a Germline Next Generation Sequencing Multigene Panel Test
por: Kim, Yoo-Na, et al.
Publicado: (2022)