Cargando…
Deep Convolutional Neural Networks Detect Tumor Genotype from Pathological Tissue Images in Gastrointestinal Stromal Tumors
SIMPLE SUMMARY: In this study, we established four convolutional neural network (DCNN) models (AlexNet, ResNet101, DenseNet201, and InceptionV3) to predict drug-sensitive mutations from images of tissues with gastrointestinal stromal tumors. The treatment of these tumors depends on the mutational su...
Autores principales: | Liang, Cher-Wei, Fang, Pei-Wei, Huang, Hsuan-Ying, Lo, Chung-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616403/ https://www.ncbi.nlm.nih.gov/pubmed/34830948 http://dx.doi.org/10.3390/cancers13225787 |
Ejemplares similares
-
Pathology of Gastrointestinal Stromal Tumors
por: Foo, Wai Chin, et al.
Publicado: (2012) -
Ghrelin and gastrointestinal stromal tumors
por: Zhu, Chang-Zhen, et al.
Publicado: (2017) -
Gastrointestinal stromal tumor: clinicopathological characteristics and pathologic prognostic analysis
por: Jumniensuk, Chayanit, et al.
Publicado: (2018) -
Gastrointestinal stromal tumor
por: Stamatakos, Michael, et al.
Publicado: (2009) -
Gastrointestinal stromal tumors
por: Beham, Alexander W., et al.
Publicado: (2011)