Cargando…
Insights into the Regulation of Ciliary Disassembly
The primary cilium, an antenna-like structure that protrudes out from the cell surface, is present in most cell types. It is a microtubule-based organelle that serves as a mega-signaling center and is important for sensing biochemical and mechanical signals to carry out various cellular processes su...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616418/ https://www.ncbi.nlm.nih.gov/pubmed/34831200 http://dx.doi.org/10.3390/cells10112977 |
_version_ | 1784604343537762304 |
---|---|
author | Patel, Maulin M. Tsiokas, Leonidas |
author_facet | Patel, Maulin M. Tsiokas, Leonidas |
author_sort | Patel, Maulin M. |
collection | PubMed |
description | The primary cilium, an antenna-like structure that protrudes out from the cell surface, is present in most cell types. It is a microtubule-based organelle that serves as a mega-signaling center and is important for sensing biochemical and mechanical signals to carry out various cellular processes such as proliferation, migration, differentiation, and many others. At any given time, cilia length is determined by a dynamic balance of cilia assembly and disassembly processes. Abnormally short or long cilia can cause a plethora of human diseases commonly referred to as ciliopathies, including, but not limited to, skeletal malformations, obesity, autosomal dominant polycystic kidney disease, retinal degeneration, and bardet-biedl syndrome. While the process of cilia assembly is studied extensively, the process of cilia disassembly and its biological role(s) are less well understood. This review discusses current knowledge on ciliary disassembly and how different cellular processes and molecular signals converge to carry out this process. This information will help us understand how the process of ciliary disassembly is regulated, identify the key steps that need further investigation, and possibly design therapeutic targets for a subset of ciliopathies that are causally linked to defective ciliary disassembly. |
format | Online Article Text |
id | pubmed-8616418 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86164182021-11-26 Insights into the Regulation of Ciliary Disassembly Patel, Maulin M. Tsiokas, Leonidas Cells Review The primary cilium, an antenna-like structure that protrudes out from the cell surface, is present in most cell types. It is a microtubule-based organelle that serves as a mega-signaling center and is important for sensing biochemical and mechanical signals to carry out various cellular processes such as proliferation, migration, differentiation, and many others. At any given time, cilia length is determined by a dynamic balance of cilia assembly and disassembly processes. Abnormally short or long cilia can cause a plethora of human diseases commonly referred to as ciliopathies, including, but not limited to, skeletal malformations, obesity, autosomal dominant polycystic kidney disease, retinal degeneration, and bardet-biedl syndrome. While the process of cilia assembly is studied extensively, the process of cilia disassembly and its biological role(s) are less well understood. This review discusses current knowledge on ciliary disassembly and how different cellular processes and molecular signals converge to carry out this process. This information will help us understand how the process of ciliary disassembly is regulated, identify the key steps that need further investigation, and possibly design therapeutic targets for a subset of ciliopathies that are causally linked to defective ciliary disassembly. MDPI 2021-11-01 /pmc/articles/PMC8616418/ /pubmed/34831200 http://dx.doi.org/10.3390/cells10112977 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Patel, Maulin M. Tsiokas, Leonidas Insights into the Regulation of Ciliary Disassembly |
title | Insights into the Regulation of Ciliary Disassembly |
title_full | Insights into the Regulation of Ciliary Disassembly |
title_fullStr | Insights into the Regulation of Ciliary Disassembly |
title_full_unstemmed | Insights into the Regulation of Ciliary Disassembly |
title_short | Insights into the Regulation of Ciliary Disassembly |
title_sort | insights into the regulation of ciliary disassembly |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616418/ https://www.ncbi.nlm.nih.gov/pubmed/34831200 http://dx.doi.org/10.3390/cells10112977 |
work_keys_str_mv | AT patelmaulinm insightsintotheregulationofciliarydisassembly AT tsiokasleonidas insightsintotheregulationofciliarydisassembly |