Cargando…
Metabolic Plasticity in Melanoma Progression and Response to Oncogene Targeted Therapies
SIMPLE SUMMARY: Targeted anti-cancer therapies have revolutionised melanoma patient care; however, cures remain uncommon due to acquired drug resistance that results in disease relapse. Recent insights from the clinic and experimental settings have identified a key role for metabolic plasticity, def...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616485/ https://www.ncbi.nlm.nih.gov/pubmed/34830962 http://dx.doi.org/10.3390/cancers13225810 |
Sumario: | SIMPLE SUMMARY: Targeted anti-cancer therapies have revolutionised melanoma patient care; however, cures remain uncommon due to acquired drug resistance that results in disease relapse. Recent insights from the clinic and experimental settings have identified a key role for metabolic plasticity, defined as the flexibility to utilise different nutrients and process them in different ways, in both disease progression and response to targeted therapies. Here, we discuss how this plasticity creates a moving target with important implications for identifying new combination therapies. ABSTRACT: Resistance to therapy continues to be a barrier to curative treatments in melanoma. Recent insights from the clinic and experimental settings have highlighted a range of non-genetic adaptive mechanisms that contribute to therapy resistance and disease relapse, including transcriptional, post-transcriptional and metabolic reprogramming. A growing body of evidence highlights the inherent plasticity of melanoma metabolism, evidenced by reversible metabolome alterations and flexibility in fuel usage that occur during metastasis and response to anti-cancer therapies. Here, we discuss how the inherent metabolic plasticity of melanoma cells facilitates both disease progression and acquisition of anti-cancer therapy resistance. In particular, we discuss in detail the different metabolic changes that occur during the three major phases of the targeted therapy response—the early response, drug tolerance and acquired resistance. We also discuss how non-genetic programs, including transcription and translation, control this process. The prevalence and diverse array of these non-genetic resistance mechanisms poses a new challenge to the field that requires innovative strategies to monitor and counteract these adaptive processes in the quest to prevent therapy resistance. |
---|