Cargando…
Machine Learning Classification of Mild Traumatic Brain Injury Using Whole-Brain Functional Activity: A Radiomics Analysis
OBJECTIVES: To investigate the classification performance of support vector machine in mild traumatic brain injury (mTBI) from normal controls. METHODS: Twenty-four mTBI patients (15 males and 9 females; mean age, 38.88 ± 13.33 years) and 24 age and sex-matched normal controls (13 males and 11 femal...
Autores principales: | Luo, Xiaoping, Lin, Dezhao, Xia, Shengwei, Wang, Dongyu, Weng, Xinmang, Huang, Wenming, Ye, Hongda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616658/ https://www.ncbi.nlm.nih.gov/pubmed/34840627 http://dx.doi.org/10.1155/2021/3015238 |
Ejemplares similares
-
Aberrant Whole-Brain Transitions and Dynamics of Spontaneous Network Microstates in Mild Traumatic Brain Injury
por: Antonakakis, Marios, et al.
Publicado: (2020) -
Evaluating Performance of EEG Data-Driven Machine Learning for Traumatic Brain Injury Classification
por: Vivaldi, Nicolas, et al.
Publicado: (2021) -
Applicability of machine learning technique in the screening of patients with mild traumatic brain injury
por: Terabe, Miriam Leiko, et al.
Publicado: (2023) -
Mild traumatic brain injuries in adults
por: Shukla, Dhaval, et al.
Publicado: (2010) -
Whole Brain Approaches for Identification of Microstructural Abnormalities in Individual Patients: Comparison of Techniques Applied to Mild Traumatic Brain Injury
por: Kim, Namhee, et al.
Publicado: (2013)