Cargando…
Risk Factors of Restroke in Patients with Lacunar Cerebral Infarction Using Magnetic Resonance Imaging Image Features under Deep Learning Algorithm
This study was aimed to explore the magnetic resonance imaging (MRI) image features based on the fuzzy local information C-means clustering (FLICM) image segmentation method to analyze the risk factors of restroke in patients with lacunar infarction. In this study, based on the FLICM algorithm, the...
Autores principales: | Ma, Chunli, Li, Hong, Zhang, Kui, Gao, Yuzhu, Yang, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616697/ https://www.ncbi.nlm.nih.gov/pubmed/34887708 http://dx.doi.org/10.1155/2021/2527595 |
Ejemplares similares
-
Image Features of Magnetic Resonance Imaging under the Deep Learning Algorithm in the Diagnosis and Nursing of Malignant Tumors
por: Sun, Lifang, et al.
Publicado: (2021) -
Long-Term Morphological Changes of Symptomatic Lacunar Infarcts and Surrounding White Matter on Structural Magnetic Resonance Imaging
por: Loos, Caroline M.J., et al.
Publicado: (2018) -
Magnetic Resonance Imaging Features under Deep Learning Algorithms in Evaluated Cerebral Protection of Craniotomy Evacuation of Hematoma under Propofol Anesthesia
por: Xin, Deqian, et al.
Publicado: (2021) -
Diagnostic Value of Image Features of Magnetic Resonance Imaging in Intracranial Hemorrhage and Cerebral Infarction
por: Tang, Wencai, et al.
Publicado: (2022) -
Preliminary Findings on the Potential Use of Magnetic Resonance Elastography to Diagnose Lacunar Infarction
por: Wang, Lingjie, et al.
Publicado: (2022)