Cargando…
Protein oligomer modeling guided by predicted interchain contacts in CASP14
For CASP14, we developed deep learning‐based methods for predicting homo‐oligomeric and hetero‐oligomeric contacts and used them for oligomer modeling. To build structure models, we developed an oligomer structure generation method that utilizes predicted interchain contacts to guide iterative restr...
Autores principales: | Baek, Minkyung, Anishchenko, Ivan, Park, Hahnbeom, Humphreys, Ian R., Baker, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616806/ https://www.ncbi.nlm.nih.gov/pubmed/34324224 http://dx.doi.org/10.1002/prot.26197 |
Ejemplares similares
-
Protein tertiary structure prediction and refinement using deep learning and Rosetta in CASP14
por: Anishchenko, Ivan, et al.
Publicado: (2021) -
Improved protein structure refinement guided by deep learning based accuracy estimation
por: Hiranuma, Naozumi, et al.
Publicado: (2021) -
A deep dilated convolutional residual network for predicting interchain contacts of protein homodimers
por: Roy, Raj S, et al.
Publicado: (2022) -
Effects of Intra- and Interchain Interactions on Exciton Dynamics of PTB7 Revealed by Model Oligomers
por: Fauvell, Thomas J., et al.
Publicado: (2020) -
Improving deep learning-based protein distance prediction in CASP14
por: Guo, Zhiye, et al.
Publicado: (2021)