Cargando…
Can machine learning-based analysis of multiparameter MRI and clinical parameters improve the performance of clinically significant prostate cancer diagnosis?
PURPOSE: To establish machine learning(ML) models for the diagnosis of clinically significant prostate cancer (csPC) using multiparameter magnetic resonance imaging (mpMRI), texture analysis (TA), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) quantitative analysis and clinical param...
Autores principales: | Peng, Tao, Xiao, JianMing, Li, Lin, Pu, BingJie, Niu, XiangKe, Zeng, XiaoHui, Wang, ZongYong, Gao, ChaoBang, Li, Ci, Chen, Lin, Yang, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616865/ https://www.ncbi.nlm.nih.gov/pubmed/34677748 http://dx.doi.org/10.1007/s11548-021-02507-w |
Ejemplares similares
-
Multiparameter MRI Radiomics Model Predicts Preoperative Peritoneal Carcinomatosis in Ovarian Cancer
por: Yu, Xiao Yu, et al.
Publicado: (2021) -
Multiparameter diagnostic model based on (18)F-FDG PET metabolic parameters and clinical variables can differentiate nonmetastatic gallbladder cancer and cholecystitis
por: Li, Can, et al.
Publicado: (2023) -
A MRI Denoising Method Based on 3D Nonlocal Means and Multidimensional PCA
por: Chang, Liu, et al.
Publicado: (2015) -
Clinical Significance of Multiparameter Intracranial Pressure Monitoring in the Prognosis Prediction of Hypertensive Intracerebral Hemorrhage
por: Yang, Yongbo, et al.
Publicado: (2022) -
Multiparameter MRI Predictors of Long-Term Survival in Glioblastoma Multiforme
por: Stringfield, Olya, et al.
Publicado: (2019)