Cargando…
Detecting failure modes in image reconstructions with interval neural network uncertainty
PURPOSE: The quantitative detection of failure modes is important for making deep neural networks reliable and usable at scale. We consider three examples for common failure modes in image reconstruction and demonstrate the potential of uncertainty quantification as a fine-grained alarm system. METH...
Autores principales: | Oala, Luis, Heiß, Cosmas, Macdonald, Jan, März, Maximilian, Kutyniok, Gitta, Samek, Wojciech |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616888/ https://www.ncbi.nlm.nih.gov/pubmed/34480723 http://dx.doi.org/10.1007/s11548-021-02482-2 |
Ejemplares similares
-
2nd International MATHEON Conference on Compressed Sensing and its Applications
por: Boche, Holger, et al.
Publicado: (2017) -
Affine density in wavelet analysis
por: Kutyniok, Gitta
Publicado: (2007) -
Interpreting Deep Neural Networks and their Predictions
por: Samek, Wojciech
Publicado: (2018) -
Finite Frames: Theory and Applications
por: Casazza, Peter, et al.
Publicado: (2013) -
Shearlets: Multiscale Analysis for Multivariate Data
por: Kutyniok, Gitta, et al.
Publicado: (2012)