Cargando…

Point detection through multi-instance deep heatmap regression for sutures in endoscopy

PURPOSE: Mitral valve repair is a complex minimally invasive surgery of the heart valve. In this context, suture detection from endoscopic images is a highly relevant task that provides quantitative information to analyse suturing patterns, assess prosthetic configurations and produce augmented real...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharan, Lalith, Romano, Gabriele, Brand, Julian, Kelm, Halvar, Karck, Matthias, De Simone, Raffaele, Engelhardt, Sandy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616891/
https://www.ncbi.nlm.nih.gov/pubmed/34748152
http://dx.doi.org/10.1007/s11548-021-02523-w
Descripción
Sumario:PURPOSE: Mitral valve repair is a complex minimally invasive surgery of the heart valve. In this context, suture detection from endoscopic images is a highly relevant task that provides quantitative information to analyse suturing patterns, assess prosthetic configurations and produce augmented reality visualisations. Facial or anatomical landmark detection tasks typically contain a fixed number of landmarks, and use regression or fixed heatmap-based approaches to localize the landmarks. However in endoscopy, there are a varying number of sutures in every image, and the sutures may occur at any location in the annulus, as they are not semantically unique. METHOD: In this work, we formulate the suture detection task as a multi-instance deep heatmap regression problem, to identify entry and exit points of sutures. We extend our previous work, and introduce the novel use of a 2D Gaussian layer followed by a differentiable 2D spatial Soft-Argmax layer to function as a local non-maximum suppression. RESULTS: We present extensive experiments with multiple heatmap distribution functions and two variants of the proposed model. In the intra-operative domain, Variant 1 showed a mean [Formula: see text] of [Formula: see text] over the baseline. Similarly, in the simulator domain, Variant 1 showed a mean [Formula: see text] of [Formula: see text] over the baseline. CONCLUSION: The proposed model shows an improvement over the baseline in the intra-operative and the simulator domains. The data is made publicly available within the scope of the MICCAI AdaptOR2021 Challenge https://adaptor2021.github.io/, and the code at https://github.com/Cardio-AI/suture-detection-pytorch/.