Cargando…
MR-contrast-aware image-to-image translations with generative adversarial networks
PURPOSE: A magnetic resonance imaging (MRI) exam typically consists of several sequences that yield different image contrasts. Each sequence is parameterized through multiple acquisition parameters that influence image contrast, signal-to-noise ratio, acquisition time, and/or resolution. Depending o...
Autores principales: | Denck, Jonas, Guehring, Jens, Maier, Andreas, Rothgang, Eva |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616894/ https://www.ncbi.nlm.nih.gov/pubmed/34148167 http://dx.doi.org/10.1007/s11548-021-02433-x |
Ejemplares similares
-
Enhanced Magnetic Resonance Image Synthesis with Contrast-Aware Generative Adversarial Networks
por: Denck, Jonas, et al.
Publicado: (2021) -
Automated Protocoling for MRI Exams—Challenges and Solutions
por: Denck, Jonas, et al.
Publicado: (2022) -
Image-to-image generative adversarial networks for synthesizing perfusion parameter maps from DSC-MR images in cerebrovascular disease
por: Kossen, Tabea, et al.
Publicado: (2023) -
Automated Billing Code Retrieval from MRI Scanner Log Data
por: Denck, Jonas, et al.
Publicado: (2019) -
Photoacoustic image synthesis with generative adversarial networks
por: Schellenberg, Melanie, et al.
Publicado: (2022)