Cargando…
scCODA is a Bayesian model for compositional single-cell data analysis
Compositional changes of cell types are main drivers of biological processes. Their detection through single-cell experiments is difficult due to the compositionality of the data and low sample sizes. We introduce scCODA (https://github.com/theislab/scCODA), a Bayesian model addressing these issues...
Autores principales: | Büttner, M., Ostner, J., Müller, C. L., Theis, F. J., Schubert, B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616929/ https://www.ncbi.nlm.nih.gov/pubmed/34824236 http://dx.doi.org/10.1038/s41467-021-27150-6 |
Ejemplares similares
-
tascCODA: Bayesian Tree-Aggregated Analysis of Compositional Amplicon and Single-Cell Data
por: Ostner, Johannes, et al.
Publicado: (2021) -
Coding with Coda
por: Gruber, Eric J
Publicado: (2013) -
La coda /
por: Sorokin, Vladimir 1955-
Publicado: (1988) -
CODA: a combo-Seq data analysis workflow
por: Nazzari, Marta, et al.
Publicado: (2022) -
coda4microbiome: compositional data analysis for microbiome cross-sectional and longitudinal studies
por: Calle, M. Luz, et al.
Publicado: (2023)