Cargando…
Automating cell counting in fluorescent microscopy through deep learning with c-ResUnet
Counting cells in fluorescent microscopy is a tedious, time-consuming task that researchers have to accomplish to assess the effects of different experimental conditions on biological structures of interest. Although such objects are generally easy to identify, the process of manually annotating cel...
Autores principales: | Morelli, Roberto, Clissa, Luca, Amici, Roberto, Cerri, Matteo, Hitrec, Timna, Luppi, Marco, Rinaldi, Lorenzo, Squarcio, Fabio, Zoccoli, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617067/ https://www.ncbi.nlm.nih.gov/pubmed/34824294 http://dx.doi.org/10.1038/s41598-021-01929-5 |
Ejemplares similares
-
Left Ventricle Segmentation in Cardiac MR Images via an Improved ResUnet
por: Xu, Shengzhou, et al.
Publicado: (2022) -
Zebrafish Embryo Vessel Segmentation Using a Novel Dual ResUNet Model
por: Zhang, Kun, et al.
Publicado: (2019) -
Artificial Intelligence for Automatic Measurement of Sagittal Vertical Axis Using ResUNet Framework
por: Weng, Chi-Hung, et al.
Publicado: (2019) -
Ore image segmentation method using U-Net and Res_Unet convolutional networks
por: Liu, Xiaobo, et al.
Publicado: (2020) -
Improved Agricultural Field Segmentation in Satellite Imagery Using TL-ResUNet Architecture
por: Safarov, Furkat, et al.
Publicado: (2022)