Cargando…
Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
In molecular dynamics (MD), neural network (NN) potentials trained bottom-up on quantum mechanical data have seen tremendous success recently. Top-down approaches that learn NN potentials directly from experimental data have received less attention, typically facing numerical and computational chall...
Autores principales: | Thaler, Stephan, Zavadlav, Julija |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617111/ https://www.ncbi.nlm.nih.gov/pubmed/34824254 http://dx.doi.org/10.1038/s41467-021-27241-4 |
Ejemplares similares
-
HAMMER: Reweighting tool for simulated data samples
por: Duell, Stephan, et al.
Publicado: (2017) -
Reweighting Parton Showers
por: Bellm, Johannes, et al.
Publicado: (2016) -
Improve the performance of CT-based pneumonia classification via source data reweighting
por: Xie, Pengtao, et al.
Publicado: (2023) -
Learning spatial frequency identification through reweighted decoding
por: Dosher, Barbara, et al.
Publicado: (2023) -
A Reweighted Scheme to Improve the Representation of the Neural Autoregressive Distribution Estimator
por: Wang, Zheng, et al.
Publicado: (2018)