Cargando…
Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer
Muntjac deer have experienced drastic karyotype changes during their speciation, making it an ideal model for studying mechanisms and functional consequences of mammalian chromosome evolution. Here we generated chromosome-level genomes for Hydropotes inermis (2n = 70), Muntiacus reevesi (2n = 46), f...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617201/ https://www.ncbi.nlm.nih.gov/pubmed/34824214 http://dx.doi.org/10.1038/s41467-021-27091-0 |
_version_ | 1784604479533875200 |
---|---|
author | Yin, Yuan Fan, Huizhong Zhou, Botong Hu, Yibo Fan, Guangyi Wang, Jinhuan Zhou, Fan Nie, Wenhui Zhang, Chenzhou Liu, Lin Zhong, Zhenyu Zhu, Wenbo Liu, Guichun Lin, Zeshan Liu, Chang Zhou, Jiong Huang, Guangping Li, Zihe Yu, Jianping Zhang, Yaolei Yang, Yue Zhuo, Bingzhao Zhang, Baowei Chang, Jiang Qian, Haiyuan Peng, Yingmei Chen, Xianqing Chen, Lei Li, Zhipeng Zhou, Qi Wang, Wen Wei, Fuwen |
author_facet | Yin, Yuan Fan, Huizhong Zhou, Botong Hu, Yibo Fan, Guangyi Wang, Jinhuan Zhou, Fan Nie, Wenhui Zhang, Chenzhou Liu, Lin Zhong, Zhenyu Zhu, Wenbo Liu, Guichun Lin, Zeshan Liu, Chang Zhou, Jiong Huang, Guangping Li, Zihe Yu, Jianping Zhang, Yaolei Yang, Yue Zhuo, Bingzhao Zhang, Baowei Chang, Jiang Qian, Haiyuan Peng, Yingmei Chen, Xianqing Chen, Lei Li, Zhipeng Zhou, Qi Wang, Wen Wei, Fuwen |
author_sort | Yin, Yuan |
collection | PubMed |
description | Muntjac deer have experienced drastic karyotype changes during their speciation, making it an ideal model for studying mechanisms and functional consequences of mammalian chromosome evolution. Here we generated chromosome-level genomes for Hydropotes inermis (2n = 70), Muntiacus reevesi (2n = 46), female and male M. crinifrons (2n = 8/9) and a contig-level genome for M. gongshanensis (2n = 8/9). These high-quality genomes combined with Hi-C data allowed us to reveal the evolution of 3D chromatin architectures during mammalian chromosome evolution. We find that the chromosome fusion events of muntjac species did not alter the A/B compartment structure and topologically associated domains near the fusion sites, but new chromatin interactions were gradually established across the fusion sites. The recently borne neo-Y chromosome of M. crinifrons, which underwent male-specific inversions, has dramatically restructured chromatin compartments, recapitulating the early evolution of canonical mammalian Y chromosomes. We also reveal that a complex structure containing unique centromeric satellite, truncated telomeric and palindrome repeats might have mediated muntjacs’ recurrent chromosome fusions. These results provide insights into the recurrent chromosome tandem fusion in muntjacs, early evolution of mammalian sex chromosomes, and reveal how chromosome rearrangements can reshape the 3D chromatin regulatory conformations during species evolution. |
format | Online Article Text |
id | pubmed-8617201 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-86172012021-12-10 Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer Yin, Yuan Fan, Huizhong Zhou, Botong Hu, Yibo Fan, Guangyi Wang, Jinhuan Zhou, Fan Nie, Wenhui Zhang, Chenzhou Liu, Lin Zhong, Zhenyu Zhu, Wenbo Liu, Guichun Lin, Zeshan Liu, Chang Zhou, Jiong Huang, Guangping Li, Zihe Yu, Jianping Zhang, Yaolei Yang, Yue Zhuo, Bingzhao Zhang, Baowei Chang, Jiang Qian, Haiyuan Peng, Yingmei Chen, Xianqing Chen, Lei Li, Zhipeng Zhou, Qi Wang, Wen Wei, Fuwen Nat Commun Article Muntjac deer have experienced drastic karyotype changes during their speciation, making it an ideal model for studying mechanisms and functional consequences of mammalian chromosome evolution. Here we generated chromosome-level genomes for Hydropotes inermis (2n = 70), Muntiacus reevesi (2n = 46), female and male M. crinifrons (2n = 8/9) and a contig-level genome for M. gongshanensis (2n = 8/9). These high-quality genomes combined with Hi-C data allowed us to reveal the evolution of 3D chromatin architectures during mammalian chromosome evolution. We find that the chromosome fusion events of muntjac species did not alter the A/B compartment structure and topologically associated domains near the fusion sites, but new chromatin interactions were gradually established across the fusion sites. The recently borne neo-Y chromosome of M. crinifrons, which underwent male-specific inversions, has dramatically restructured chromatin compartments, recapitulating the early evolution of canonical mammalian Y chromosomes. We also reveal that a complex structure containing unique centromeric satellite, truncated telomeric and palindrome repeats might have mediated muntjacs’ recurrent chromosome fusions. These results provide insights into the recurrent chromosome tandem fusion in muntjacs, early evolution of mammalian sex chromosomes, and reveal how chromosome rearrangements can reshape the 3D chromatin regulatory conformations during species evolution. Nature Publishing Group UK 2021-11-25 /pmc/articles/PMC8617201/ /pubmed/34824214 http://dx.doi.org/10.1038/s41467-021-27091-0 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Yin, Yuan Fan, Huizhong Zhou, Botong Hu, Yibo Fan, Guangyi Wang, Jinhuan Zhou, Fan Nie, Wenhui Zhang, Chenzhou Liu, Lin Zhong, Zhenyu Zhu, Wenbo Liu, Guichun Lin, Zeshan Liu, Chang Zhou, Jiong Huang, Guangping Li, Zihe Yu, Jianping Zhang, Yaolei Yang, Yue Zhuo, Bingzhao Zhang, Baowei Chang, Jiang Qian, Haiyuan Peng, Yingmei Chen, Xianqing Chen, Lei Li, Zhipeng Zhou, Qi Wang, Wen Wei, Fuwen Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer |
title | Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer |
title_full | Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer |
title_fullStr | Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer |
title_full_unstemmed | Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer |
title_short | Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer |
title_sort | molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617201/ https://www.ncbi.nlm.nih.gov/pubmed/34824214 http://dx.doi.org/10.1038/s41467-021-27091-0 |
work_keys_str_mv | AT yinyuan molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT fanhuizhong molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT zhoubotong molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT huyibo molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT fanguangyi molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT wangjinhuan molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT zhoufan molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT niewenhui molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT zhangchenzhou molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT liulin molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT zhongzhenyu molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT zhuwenbo molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT liuguichun molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT linzeshan molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT liuchang molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT zhoujiong molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT huangguangping molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT lizihe molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT yujianping molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT zhangyaolei molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT yangyue molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT zhuobingzhao molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT zhangbaowei molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT changjiang molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT qianhaiyuan molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT pengyingmei molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT chenxianqing molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT chenlei molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT lizhipeng molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT zhouqi molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT wangwen molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer AT weifuwen molecularmechanismsandtopologicalconsequencesofdrasticchromosomalrearrangementsofmuntjacdeer |