Cargando…

A full gap above the Fermi level: the charge density wave of monolayer VS(2)

In the standard model of charge density wave (CDW) transitions, the displacement along a single phonon mode lowers the total electronic energy by creating a gap at the Fermi level, making the CDW a metal–insulator transition. Here, using scanning tunneling microscopy and spectroscopy and ab initio c...

Descripción completa

Detalles Bibliográficos
Autores principales: van Efferen, Camiel, Berges, Jan, Hall, Joshua, van Loon, Erik, Kraus, Stefan, Schobert, Arne, Wekking, Tobias, Huttmann, Felix, Plaar, Eline, Rothenbach, Nico, Ollefs, Katharina, Arruda, Lucas Machado, Brookes, Nick, Schönhoff, Gunnar, Kummer, Kurt, Wende, Heiko, Wehling, Tim, Michely, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617271/
https://www.ncbi.nlm.nih.gov/pubmed/34824213
http://dx.doi.org/10.1038/s41467-021-27094-x
Descripción
Sumario:In the standard model of charge density wave (CDW) transitions, the displacement along a single phonon mode lowers the total electronic energy by creating a gap at the Fermi level, making the CDW a metal–insulator transition. Here, using scanning tunneling microscopy and spectroscopy and ab initio calculations, we show that VS(2) realizes a CDW which stands out of this standard model. There is a full CDW gap residing in the unoccupied states of monolayer VS(2). At the Fermi level, the CDW induces a topological metal-metal (Lifshitz) transition. Non-linear coupling of transverse and longitudinal phonons is essential for the formation of the CDW and the full gap above the Fermi level. Additionally, x-ray magnetic circular dichroism reveals the absence of net magnetization in this phase, pointing to coexisting charge and spin density waves in the ground state.