Cargando…
A benchmark study of simulation methods for single-cell RNA sequencing data
Single-cell RNA-seq (scRNA-seq) data simulation is critical for evaluating computational methods for analysing scRNA-seq data especially when ground truth is experimentally unattainable. The reliability of evaluation depends on the ability of simulation methods to capture properties of experimental...
Autores principales: | Cao, Yue, Yang, Pengyi, Yang, Jean Yee Hwa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617278/ https://www.ncbi.nlm.nih.gov/pubmed/34824223 http://dx.doi.org/10.1038/s41467-021-27130-w |
Ejemplares similares
-
Benchmarking of analytical combinations for COVID-19 outcome prediction using single-cell RNA sequencing data
por: Cao, Yue, et al.
Publicado: (2023) -
Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data
por: Yu, Lijia, et al.
Publicado: (2022) -
A benchmark of batch-effect correction methods for single-cell RNA sequencing data
por: Tran, Hoa Thi Nhu, et al.
Publicado: (2020) -
scFeatures: multi-view representations of single-cell and spatial data for disease outcome prediction
por: Cao, Yue, et al.
Publicado: (2022) -
Ensemble deep learning of embeddings for clustering multimodal single-cell omics data
por: Yu, Lijia, et al.
Publicado: (2023)