Cargando…
Proteome Analysis of the Hypothalamic Arcuate Nucleus in Chronic High-Fat Diet-Induced Obesity
The hypothalamus plays a central role in the integrated regulation of feeding and energy homeostasis. The hypothalamic arcuate nucleus (ARC) contains a population of neurons that express orexigenic and anorexigenic factors and is thought to control feeding behavior via several neuronal circuits. In...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617565/ https://www.ncbi.nlm.nih.gov/pubmed/34840970 http://dx.doi.org/10.1155/2021/3501770 |
_version_ | 1784604536304828416 |
---|---|
author | Kim, Chang Yeon Ahn, Jang Ho Han, Do Hyun NamKoong, Cherl Choi, Hyung Jin |
author_facet | Kim, Chang Yeon Ahn, Jang Ho Han, Do Hyun NamKoong, Cherl Choi, Hyung Jin |
author_sort | Kim, Chang Yeon |
collection | PubMed |
description | The hypothalamus plays a central role in the integrated regulation of feeding and energy homeostasis. The hypothalamic arcuate nucleus (ARC) contains a population of neurons that express orexigenic and anorexigenic factors and is thought to control feeding behavior via several neuronal circuits. In this study, a comparative proteomic analysis of low-fat control diet- (LFD-) and high-fat diet- (HFD-) induced hypothalamic ARC was performed to identify differentially expressed proteins (DEPs) related to changes in body weight. In the ARC in the hypothalamus, 6621 proteins (FDR < 0.01) were detected, and 178 proteins were categorized as DEPs (89 upregulated and 89 downregulated in the HFD group). Among the Gene Ontology molecular function terms associated with the DEPs, protein binding was the most significant. Fibroblast growth factor receptor substrate 2 (Frs2) and SHC adaptor protein 3 (Shc3) were related to protein binding and involved in the neurotrophin signaling pathway according to Kyoto Encyclopedia of Genes and Genomes analysis. Furthermore, high-precision quantitative proteomic analysis revealed that the protein profile of the ARC in mice with HFD-induced obesity differed from that in LFD mice, thereby offering insight into the molecular basis of feeding regulation and suggesting Frs2 and Shc3 as novel treatment targets for central anorexigenic signal induction. |
format | Online Article Text |
id | pubmed-8617565 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-86175652021-11-27 Proteome Analysis of the Hypothalamic Arcuate Nucleus in Chronic High-Fat Diet-Induced Obesity Kim, Chang Yeon Ahn, Jang Ho Han, Do Hyun NamKoong, Cherl Choi, Hyung Jin Biomed Res Int Research Article The hypothalamus plays a central role in the integrated regulation of feeding and energy homeostasis. The hypothalamic arcuate nucleus (ARC) contains a population of neurons that express orexigenic and anorexigenic factors and is thought to control feeding behavior via several neuronal circuits. In this study, a comparative proteomic analysis of low-fat control diet- (LFD-) and high-fat diet- (HFD-) induced hypothalamic ARC was performed to identify differentially expressed proteins (DEPs) related to changes in body weight. In the ARC in the hypothalamus, 6621 proteins (FDR < 0.01) were detected, and 178 proteins were categorized as DEPs (89 upregulated and 89 downregulated in the HFD group). Among the Gene Ontology molecular function terms associated with the DEPs, protein binding was the most significant. Fibroblast growth factor receptor substrate 2 (Frs2) and SHC adaptor protein 3 (Shc3) were related to protein binding and involved in the neurotrophin signaling pathway according to Kyoto Encyclopedia of Genes and Genomes analysis. Furthermore, high-precision quantitative proteomic analysis revealed that the protein profile of the ARC in mice with HFD-induced obesity differed from that in LFD mice, thereby offering insight into the molecular basis of feeding regulation and suggesting Frs2 and Shc3 as novel treatment targets for central anorexigenic signal induction. Hindawi 2021-11-18 /pmc/articles/PMC8617565/ /pubmed/34840970 http://dx.doi.org/10.1155/2021/3501770 Text en Copyright © 2021 Chang Yeon Kim et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Kim, Chang Yeon Ahn, Jang Ho Han, Do Hyun NamKoong, Cherl Choi, Hyung Jin Proteome Analysis of the Hypothalamic Arcuate Nucleus in Chronic High-Fat Diet-Induced Obesity |
title | Proteome Analysis of the Hypothalamic Arcuate Nucleus in Chronic High-Fat Diet-Induced Obesity |
title_full | Proteome Analysis of the Hypothalamic Arcuate Nucleus in Chronic High-Fat Diet-Induced Obesity |
title_fullStr | Proteome Analysis of the Hypothalamic Arcuate Nucleus in Chronic High-Fat Diet-Induced Obesity |
title_full_unstemmed | Proteome Analysis of the Hypothalamic Arcuate Nucleus in Chronic High-Fat Diet-Induced Obesity |
title_short | Proteome Analysis of the Hypothalamic Arcuate Nucleus in Chronic High-Fat Diet-Induced Obesity |
title_sort | proteome analysis of the hypothalamic arcuate nucleus in chronic high-fat diet-induced obesity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617565/ https://www.ncbi.nlm.nih.gov/pubmed/34840970 http://dx.doi.org/10.1155/2021/3501770 |
work_keys_str_mv | AT kimchangyeon proteomeanalysisofthehypothalamicarcuatenucleusinchronichighfatdietinducedobesity AT ahnjangho proteomeanalysisofthehypothalamicarcuatenucleusinchronichighfatdietinducedobesity AT handohyun proteomeanalysisofthehypothalamicarcuatenucleusinchronichighfatdietinducedobesity AT namkoongcherl proteomeanalysisofthehypothalamicarcuatenucleusinchronichighfatdietinducedobesity AT choihyungjin proteomeanalysisofthehypothalamicarcuatenucleusinchronichighfatdietinducedobesity |