Cargando…
Prediction of Neoadjuvant Chemotherapy Response in Osteosarcoma Using Convolutional Neural Network of Tumor Center (18)F-FDG PET Images
We compared the accuracy of prediction of the response to neoadjuvant chemotherapy (NAC) in osteosarcoma patients between machine learning approaches of whole tumor utilizing fluorine−(18)fluorodeoxyglucose ((18)F-FDG) uptake heterogeneity features and a convolutional neural network of the intratumo...
Autores principales: | Kim, Jingyu, Jeong, Su Young, Kim, Byung-Chul, Byun, Byung-Hyun, Lim, Ilhan, Kong, Chang-Bae, Song, Won Seok, Lim, Sang Moo, Woo, Sang-Keun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617812/ https://www.ncbi.nlm.nih.gov/pubmed/34829324 http://dx.doi.org/10.3390/diagnostics11111976 |
Ejemplares similares
-
Early response monitoring of neoadjuvant chemotherapy using [(18)F]FDG PET can predict the clinical outcome of extremity osteosarcoma
por: Lee, Inki, et al.
Publicado: (2020) -
Preliminary Radiogenomic Evidence for the Prediction of Metastasis and Chemotherapy Response in Pediatric Patients with Osteosarcoma Using (18)F-FDG PET/CT, EZRIN, and KI67
por: Kim, Byung-Chul, et al.
Publicado: (2021) -
Prediction of Chemotherapy Response of Osteosarcoma Using Baseline (18)F-FDG Textural Features Machine Learning Approaches with PCA
por: Jeong, Su Young, et al.
Publicado: (2019) -
Comparison of (99m)Tc-methyl diphosphonate bone scintigraphy and (18)F-fluorodeoxyglucose positron emission tomography/computed tomography to predict histologic response to neoadjuvant chemotherapy in patients with osteosarcoma
por: Lee, Inki, et al.
Publicado: (2018) -
Deep Learning-Based Delayed PET Image Synthesis from Corresponding Early Scanned PET for Dosimetry Uptake Estimation
por: Kim, Kangsan, et al.
Publicado: (2023)