Cargando…
LASSO and Bioinformatics Analysis in the Identification of Key Genes for Prognostic Genes of Gynecologic Cancer
The aim of this study is to identify potential biomarkers for early diagnosis of gynecologic cancer in order to improve survival. Cervical cancer (CC) and endometrial cancer (EC) are the most common malignant tumors of gynecologic cancer among women in the world. As the underlying molecular mechanis...
Autores principales: | Yu, Shao-Hua, Cai, Jia-Hua, Chen, De-Lun, Liao, Szu-Han, Lin, Yi-Zhen, Chung, Yu-Ting, Tsai, Jeffrey J. P., Wang, Charles C. N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617991/ https://www.ncbi.nlm.nih.gov/pubmed/34834529 http://dx.doi.org/10.3390/jpm11111177 |
Ejemplares similares
-
Identification of Key Prognostic Genes of Triple Negative Breast Cancer by LASSO-Based Machine Learning and Bioinformatics Analysis
por: Chen, De-Lun, et al.
Publicado: (2022) -
Identification of GSN and LAMC2 as Key Prognostic Genes of Bladder Cancer by Integrated Bioinformatics Analysis
por: Yang, Jia-Lian, et al.
Publicado: (2020) -
Identification of Prognostic Candidate Genes in Breast Cancer by Integrated Bioinformatic Analysis
por: Wang, Charles C.N., et al.
Publicado: (2019) -
Bioinformatics analysis to screen the key prognostic genes in ovarian cancer
por: Li, Li, et al.
Publicado: (2017) -
Identification of key genes and pathways in seminoma by bioinformatics analysis
por: Chen, Ye-Hui, et al.
Publicado: (2019)