Cargando…
Effect of Corneal Tilt on the Determination of Asphericity
Purpose: To quantify the effect of levelling the corneal surface around the optical axis on the calculated values of corneal asphericity when conic and biconic models are used to fit the anterior corneal surface. Methods: This cross-sectional study starts with a mathematical simulation proving the c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618126/ https://www.ncbi.nlm.nih.gov/pubmed/34833714 http://dx.doi.org/10.3390/s21227636 |
_version_ | 1784604672656408576 |
---|---|
author | Consejo, Alejandra Fathy, Arwa Lopes, Bernardo T. Ambrósio, Renato Abass, Ahmed |
author_facet | Consejo, Alejandra Fathy, Arwa Lopes, Bernardo T. Ambrósio, Renato Abass, Ahmed |
author_sort | Consejo, Alejandra |
collection | PubMed |
description | Purpose: To quantify the effect of levelling the corneal surface around the optical axis on the calculated values of corneal asphericity when conic and biconic models are used to fit the anterior corneal surface. Methods: This cross-sectional study starts with a mathematical simulation proving the concept of the effect that the eye’s tilt has on the corneal asphericity calculation. Spherical, conic and biconic models are considered and compared. Further, corneal asphericity is analysed in the eyes of 177 healthy participants aged 35.4 ± 15.2. The optical axis was determined using an optimization procedure via the Levenberg–Marquardt nonlinear least-squares algorithm, before fitting the corneal surface to spherical, conic and biconic models. The influence of pupil size (aperture radii of 1.5, 3.0, 4.0 and 5.0 mm) on corneal radius and asphericity was also analysed. Results: In computer simulations, eye tilt caused an increase in the apical radii of the surface with the increase of the tilt angle in both positive and negative directions and aperture radii in all models. Fitting the cornea to spherical models did not show a significant difference between the raw-measured corneal surfaces and the levelled surfaces for right and left eyes. When the conic models were fitted to the cornea, changes in the radii of the cornea among the raw-measured corneal surfaces’ data and levelled data were not significant; however, significant differences were recorded in the asphericity of the anterior surfaces at radii of aperture 1.5 mm (p < 0.01). With the biconic model, the posterior surfaces recorded significant asphericity differences at aperture radii of 1.5 mm, 3 mm, 4 mm and 5 mm (p = 0.01, p < 0.01, p < 0.01 & p < 0.01, respectively) in the nasal temporal direction of right eyes and left eyes (p < 0.01, p < 0.01, p < 0.01 & p < 0.01, respectively). In the superior–inferior direction, significant changes were only noticed at aperture radii of 1.5 mm for both right and left eyes (p = 0.05, p < 0.01). Conclusions: Estimation of human corneal asphericity from topography or tomography data using conic and biconic models of corneas are affected by eyes’ natural tilt. In contrast, the apical radii of the cornea are less affected. Using corneal asphericity in certain applications such as fitting contact lenses, corneal implant design, planning for refractive surgery and mathematical modelling when a geometrical centre of the eye is needed should be implemented with caution. |
format | Online Article Text |
id | pubmed-8618126 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86181262021-11-27 Effect of Corneal Tilt on the Determination of Asphericity Consejo, Alejandra Fathy, Arwa Lopes, Bernardo T. Ambrósio, Renato Abass, Ahmed Sensors (Basel) Article Purpose: To quantify the effect of levelling the corneal surface around the optical axis on the calculated values of corneal asphericity when conic and biconic models are used to fit the anterior corneal surface. Methods: This cross-sectional study starts with a mathematical simulation proving the concept of the effect that the eye’s tilt has on the corneal asphericity calculation. Spherical, conic and biconic models are considered and compared. Further, corneal asphericity is analysed in the eyes of 177 healthy participants aged 35.4 ± 15.2. The optical axis was determined using an optimization procedure via the Levenberg–Marquardt nonlinear least-squares algorithm, before fitting the corneal surface to spherical, conic and biconic models. The influence of pupil size (aperture radii of 1.5, 3.0, 4.0 and 5.0 mm) on corneal radius and asphericity was also analysed. Results: In computer simulations, eye tilt caused an increase in the apical radii of the surface with the increase of the tilt angle in both positive and negative directions and aperture radii in all models. Fitting the cornea to spherical models did not show a significant difference between the raw-measured corneal surfaces and the levelled surfaces for right and left eyes. When the conic models were fitted to the cornea, changes in the radii of the cornea among the raw-measured corneal surfaces’ data and levelled data were not significant; however, significant differences were recorded in the asphericity of the anterior surfaces at radii of aperture 1.5 mm (p < 0.01). With the biconic model, the posterior surfaces recorded significant asphericity differences at aperture radii of 1.5 mm, 3 mm, 4 mm and 5 mm (p = 0.01, p < 0.01, p < 0.01 & p < 0.01, respectively) in the nasal temporal direction of right eyes and left eyes (p < 0.01, p < 0.01, p < 0.01 & p < 0.01, respectively). In the superior–inferior direction, significant changes were only noticed at aperture radii of 1.5 mm for both right and left eyes (p = 0.05, p < 0.01). Conclusions: Estimation of human corneal asphericity from topography or tomography data using conic and biconic models of corneas are affected by eyes’ natural tilt. In contrast, the apical radii of the cornea are less affected. Using corneal asphericity in certain applications such as fitting contact lenses, corneal implant design, planning for refractive surgery and mathematical modelling when a geometrical centre of the eye is needed should be implemented with caution. MDPI 2021-11-17 /pmc/articles/PMC8618126/ /pubmed/34833714 http://dx.doi.org/10.3390/s21227636 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Consejo, Alejandra Fathy, Arwa Lopes, Bernardo T. Ambrósio, Renato Abass, Ahmed Effect of Corneal Tilt on the Determination of Asphericity |
title | Effect of Corneal Tilt on the Determination of Asphericity |
title_full | Effect of Corneal Tilt on the Determination of Asphericity |
title_fullStr | Effect of Corneal Tilt on the Determination of Asphericity |
title_full_unstemmed | Effect of Corneal Tilt on the Determination of Asphericity |
title_short | Effect of Corneal Tilt on the Determination of Asphericity |
title_sort | effect of corneal tilt on the determination of asphericity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618126/ https://www.ncbi.nlm.nih.gov/pubmed/34833714 http://dx.doi.org/10.3390/s21227636 |
work_keys_str_mv | AT consejoalejandra effectofcornealtiltonthedeterminationofasphericity AT fathyarwa effectofcornealtiltonthedeterminationofasphericity AT lopesbernardot effectofcornealtiltonthedeterminationofasphericity AT ambrosiorenato effectofcornealtiltonthedeterminationofasphericity AT abassahmed effectofcornealtiltonthedeterminationofasphericity |