Cargando…
Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques
The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and experimental costs. The adaptation of machine learning techniques to compute the various properties of materials is gaining more attention. This...
Autores principales: | Xu, Yue, Ahmad, Waqas, Ahmad, Ayaz, Ostrowski, Krzysztof Adam, Dudek, Marta, Aslam, Fahid, Joyklad, Panuwat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618129/ https://www.ncbi.nlm.nih.gov/pubmed/34832432 http://dx.doi.org/10.3390/ma14227034 |
Ejemplares similares
-
Application of Advanced Machine Learning Approaches to Predict the Compressive Strength of Concrete Containing Supplementary Cementitious Materials
por: Ahmad, Waqas, et al.
Publicado: (2021) -
Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
por: Ahmad, Ayaz, et al.
Publicado: (2021) -
Predicting the Mechanical Properties of RCA-Based Concrete Using Supervised Machine Learning Algorithms
por: Shang, Meijun, et al.
Publicado: (2022) -
Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm
por: Ahmad, Ayaz, et al.
Publicado: (2021) -
Comparison of Prediction Models Based on Machine Learning for the Compressive Strength Estimation of Recycled Aggregate Concrete
por: Khan, Kaffayatullah, et al.
Publicado: (2022)