Cargando…

Presence of Arsenic in Potential Sources of Drinking Water Supply Located in a Mineralized and Mined Area of the Sierra Madre Oriental in Mexico

Mine wastes from the La Aurora mine in the state of Guanajuato were generated by the flotation process and placed in four tailing dumps on the local stream while the plant operated. Given that these wastes contain toxic elements, it is important to establish their impact on the quality of several su...

Descripción completa

Detalles Bibliográficos
Autores principales: Escot-Espinoza, Victor Manuel, Ramos-Arroyo, Yann Rene, Lázaro, Isabel, Montes-Avila, Isidro, Carrizalez-Yañez, Leticia, Briones-Gallardo, Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618315/
https://www.ncbi.nlm.nih.gov/pubmed/34822698
http://dx.doi.org/10.3390/toxics9110307
_version_ 1784604717974814720
author Escot-Espinoza, Victor Manuel
Ramos-Arroyo, Yann Rene
Lázaro, Isabel
Montes-Avila, Isidro
Carrizalez-Yañez, Leticia
Briones-Gallardo, Roberto
author_facet Escot-Espinoza, Victor Manuel
Ramos-Arroyo, Yann Rene
Lázaro, Isabel
Montes-Avila, Isidro
Carrizalez-Yañez, Leticia
Briones-Gallardo, Roberto
author_sort Escot-Espinoza, Victor Manuel
collection PubMed
description Mine wastes from the La Aurora mine in the state of Guanajuato were generated by the flotation process and placed in four tailing dumps on the local stream while the plant operated. Given that these wastes contain toxic elements, it is important to establish their impact on the quality of several surrounding natural sources of water that are considered potential drinking water supplies. This study identified four water source types, in which the contents of arsenic (As), mercury (Hg), and thallium (Tl) were exceeded, according to international guideline values for drinking water quality. The first type of aqueous sample corresponded to leachates produced by rainwater infiltration in tailings and water–mineral waste interactions. The second type corresponded to surface water along the Xichú and La Laja Streams, and the third and fourth types involved two groundwater well samples and spring samples, respectively. The Chiquito Stream was used as a reference area that had not been impacted by the mine wastes. The isotopic signatures associated with δ(34)S(sulfate) and δ(18)O(sulfate) compositions from the El Ojo de Agua spring are similar to those of the Santa María River and are different from those of the mine waste leachates. This study shows evidence of the presence of As in the El Ojo de Agua spring, which results from dissolution of secondary mineral phases that were produced by alteration of the mine wastes, which then migrated along the Xichú Stream system until reaching the spring. These As-bearing fine particles are prone to dissolution when in contact with this water source. Principal component analysis revealed that the observed As, Tl, and Hg can be attributed to weathering of the mine wastes. However, the results suggest that a natural contribution of these elements could be associated with rainwater–igneous rock interactions.
format Online
Article
Text
id pubmed-8618315
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86183152021-11-27 Presence of Arsenic in Potential Sources of Drinking Water Supply Located in a Mineralized and Mined Area of the Sierra Madre Oriental in Mexico Escot-Espinoza, Victor Manuel Ramos-Arroyo, Yann Rene Lázaro, Isabel Montes-Avila, Isidro Carrizalez-Yañez, Leticia Briones-Gallardo, Roberto Toxics Article Mine wastes from the La Aurora mine in the state of Guanajuato were generated by the flotation process and placed in four tailing dumps on the local stream while the plant operated. Given that these wastes contain toxic elements, it is important to establish their impact on the quality of several surrounding natural sources of water that are considered potential drinking water supplies. This study identified four water source types, in which the contents of arsenic (As), mercury (Hg), and thallium (Tl) were exceeded, according to international guideline values for drinking water quality. The first type of aqueous sample corresponded to leachates produced by rainwater infiltration in tailings and water–mineral waste interactions. The second type corresponded to surface water along the Xichú and La Laja Streams, and the third and fourth types involved two groundwater well samples and spring samples, respectively. The Chiquito Stream was used as a reference area that had not been impacted by the mine wastes. The isotopic signatures associated with δ(34)S(sulfate) and δ(18)O(sulfate) compositions from the El Ojo de Agua spring are similar to those of the Santa María River and are different from those of the mine waste leachates. This study shows evidence of the presence of As in the El Ojo de Agua spring, which results from dissolution of secondary mineral phases that were produced by alteration of the mine wastes, which then migrated along the Xichú Stream system until reaching the spring. These As-bearing fine particles are prone to dissolution when in contact with this water source. Principal component analysis revealed that the observed As, Tl, and Hg can be attributed to weathering of the mine wastes. However, the results suggest that a natural contribution of these elements could be associated with rainwater–igneous rock interactions. MDPI 2021-11-15 /pmc/articles/PMC8618315/ /pubmed/34822698 http://dx.doi.org/10.3390/toxics9110307 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Escot-Espinoza, Victor Manuel
Ramos-Arroyo, Yann Rene
Lázaro, Isabel
Montes-Avila, Isidro
Carrizalez-Yañez, Leticia
Briones-Gallardo, Roberto
Presence of Arsenic in Potential Sources of Drinking Water Supply Located in a Mineralized and Mined Area of the Sierra Madre Oriental in Mexico
title Presence of Arsenic in Potential Sources of Drinking Water Supply Located in a Mineralized and Mined Area of the Sierra Madre Oriental in Mexico
title_full Presence of Arsenic in Potential Sources of Drinking Water Supply Located in a Mineralized and Mined Area of the Sierra Madre Oriental in Mexico
title_fullStr Presence of Arsenic in Potential Sources of Drinking Water Supply Located in a Mineralized and Mined Area of the Sierra Madre Oriental in Mexico
title_full_unstemmed Presence of Arsenic in Potential Sources of Drinking Water Supply Located in a Mineralized and Mined Area of the Sierra Madre Oriental in Mexico
title_short Presence of Arsenic in Potential Sources of Drinking Water Supply Located in a Mineralized and Mined Area of the Sierra Madre Oriental in Mexico
title_sort presence of arsenic in potential sources of drinking water supply located in a mineralized and mined area of the sierra madre oriental in mexico
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618315/
https://www.ncbi.nlm.nih.gov/pubmed/34822698
http://dx.doi.org/10.3390/toxics9110307
work_keys_str_mv AT escotespinozavictormanuel presenceofarsenicinpotentialsourcesofdrinkingwatersupplylocatedinamineralizedandminedareaofthesierramadreorientalinmexico
AT ramosarroyoyannrene presenceofarsenicinpotentialsourcesofdrinkingwatersupplylocatedinamineralizedandminedareaofthesierramadreorientalinmexico
AT lazaroisabel presenceofarsenicinpotentialsourcesofdrinkingwatersupplylocatedinamineralizedandminedareaofthesierramadreorientalinmexico
AT montesavilaisidro presenceofarsenicinpotentialsourcesofdrinkingwatersupplylocatedinamineralizedandminedareaofthesierramadreorientalinmexico
AT carrizalezyanezleticia presenceofarsenicinpotentialsourcesofdrinkingwatersupplylocatedinamineralizedandminedareaofthesierramadreorientalinmexico
AT brionesgallardoroberto presenceofarsenicinpotentialsourcesofdrinkingwatersupplylocatedinamineralizedandminedareaofthesierramadreorientalinmexico